A rapidly changing and expanding livestock and poultry production sector is causing a range of environmental problems on local, regional and global scales.

Animal Manure Recycling: Treatment and Management presents an accessible overview of environmentally friendly technologies for managing animal manure more efficiently and in a sustainable manner. The book describes the physical and chemical characteristics of animal manure and microbial processes, featuring detailed examples and case studies showing how this knowledge can be used in practice. Readers are introduced to the sustainable use of animal manure for crop fertilisation and soil amelioration. Environmentally friendly technologies for reducing emissions of ammonia, odour and the greenhouse gases nitrous oxide and methane are presented, and reduction of plant nutrient losses using separation technologies is introduced. Finally and most importantly, the book describes methods to commercialise and transfer knowledge about innovations to end-users.

Topics covered include:

- Regulation of animal manure management
- Manure organic matter: characteristics and microbial transformations
Greenhouse gas emissions from animal manures and technologies for their reduction

• Technologies and logistics for handling, transport and distribution of animal manures

• Bioenergy production

• Animal manure residue upgrading and nutrient recovery in bio-fertilisers

• Life cycle assessment of manure management systems

• Innovation in animal manure management and recycling

Animal Manure Recycling: Treatment and Management presents state-of-the-art coverage of the entire animal manure chain, providing practical information for engineers, environmental consultants, academics and advanced students involved in scientific, technical and regulatory issues related to animal manure management.

ABOUT THE AUTHOR

Sven G. Sommer, Institute of Chemical Engineering, Biotechnology and Environmental Engineering, University of Southern Denmark (SDU), Denmark.

Professor Sommer has over fifteen years' experience in international research within all aspects of manure storage and composting processes.

He is currently leading a research group in biosystem technologies at the University of Southern Denmark. Previous studies include: chemical processes and microbial activity affecting gaseous losses of ammonia and greenhouse gases, biogas production and techniques to mitigate greenhouse gas emission (CH4 and N2O) from manure during storage, and development and implementation of efficient and cheap separation techniques.

Lars S. Jensen, Faculty of Life Sciences, University of Copenhagen, Denmark.

Thomas Schmidt, Technology Manager, Aarhus University, Denmark.