Developing sufficient energy resources to replace coal, oil and gas is a globally critical necessity. Alternatives to fossil fuels such as wind, solar, or geothermal energies are desirable, but the usable quantities are limited and each has inherent deterrents. The only virtually unlimited energy source is nuclear energy, where safety of infrastructure systems is the paramount concern.

Infrastructure Systems for Nuclear Energy addresses the analysis and design of infrastructures associated with nuclear energy. It provides an overview of the current and future nuclear power industry and the infrastructure systems from the perspectives of regulators, operators, practicing engineers and research academics. This book also provides details on investigations of containment structures, nuclear waste storage facilities and the applications of commercial/academic computer software.

Specific environments that challenge the behavior of nuclear power plants infrastructure systems such as earthquake, blast, high temperature, irradiation effects, soil-structure interaction effect, etc., are also discussed.

Key features:
- Includes contributions from global experts representing academia and industry
- Provides an overview of the nuclear power industry and nuclear infrastructure systems
- Presents the state-of-the-art as well as the future direction for nuclear civil infrastructure systems
Infrastructure Systems for Nuclear Energy is a comprehensive, up-to-date reference for researchers and practitioners working in this field and for graduate studies in civil and mechanical engineering.

ABOUT THE AUTHOR

Thomas Hsu, University of Houston is Moores Professor of Civil Engineering in the department of civil and environmental engineering at the University of Houston. Professor Hsu has been Principal and Co-Principal Investigator on funded projects for over 30 years, and has received project funding amounting to over $3.5 million. He established the University of Houston's Structural Research Laboratory, and his research work has formed the basis for the shear and torsion design provisions in the American concrete Institute Building Code. He has won numerous awards for his teaching and research, and has authored or edited 4 books on reinforced concrete.

Jui-Liang Lin, National Center for Research on Earthquake Engineering (NCREE), Taiwan, is an associate researcher with NCREE, Taiwan.

Chiun-lin Wu, National Center for Research on Earthquake Engineering (NCREE), Taiwan, is an associate researcher with NCREE, Taiwan.

To purchase this product, please visit https://www.wiley.com/en-us/9781118536261