The go # to resource for microscopists on biological applications of field emission gun scanning electron microscopy (FEGSEM)

The evolution of scanning electron microscopy technologies and capability over the past few years has revolutionized the biological imaging capabilities of the microscope—giving it the capability to examine surface structures of cellular membranes to reveal the organization of individual proteins across a membrane bilayer and the arrangement of cell cytoskeleton at a nm scale. Most notable are their improvements for field emission scanning electron microscopy (FEGSEM), which when combined with cryo-preparation techniques, has provided insight into a wide range of biological questions including the functionality of bacteria and viruses. This full-colour, must-have book for microscopists traces the development of the biological field emission scanning electron microscopy (FEGSEM) and highlights its current value in biological research as well as its future worth.

Biological Field Emission Scanning Electron Microscopy highlights the present capability of the technique and informs the wider biological science community of its application in basic biological research. Starting with the theory and history of FEGSEM, the book offers chapters covering; operation (strengths and weakness, sample selection, handling, limitations, and preparation); Commercial developments and principals from the major FEGSEM manufacturers (Thermo Scientific, JEOL, HITACHI, ZEISS, Tescan); technical developments essential to bioFEGSEM; cryobio FEGSEM; cryo-FIB; FEGSEM digital-tomography; array tomography; public health research; mammalian cells and tissues; digital challenges (image collection, storage, and automated data analysis); and more.

- Examines the creation of the biological field emission gun scanning electron microscopy (FEGSEM) and discusses its benefits to the biological research community and future value
• Provides insight into the design and development philosophy behind current instrument manufacturers

• Covers sample handling, applications, and key supporting techniques

• Focuses on the biological applications of field emission gun scanning electron microscopy (FEGSEM), covering both plant and animal research

• Presented in full colour

An important part of the Wiley-Royal Microscopical Series, Biological Field Emission Scanning Electron Microscopy is an ideal general resource for experienced academic and industrial users of electron microscopy—specifically, those with a need to understand the application, limitations, and strengths of FEGSEM.

ABOUT THE AUTHOR

ROLAND A. FLECK, P HD, FRCPath, FRMS, is a Professor in Ultrastructural Imaging and Director of the Centre for Ultrastructural Imaging at King's College London. Having specialised in basic research into cellular injury at low temperatures and during cryo-preservation regimes he has developed specialist knowledge of freeze fracture/freeze etch preparation of tissues and wider cryo-microscopic techniques. As director of the Centre for Ultrastructural Imaging he supports advanced three dimensional studies of cells and tissues by both conventional room temperature and cryo electron microscopy. He is a visiting Professor of the Faculty of Health and Medical Sciences, University of Copenhagen and Professor of the UNESCO Chair in Cryobiology, National Academy of Sciences of Ukraine, Institute for Problems of Cryobiology, Kharkiv, Ukraine.

BRUNO M. HUMBEL, Dr. sc. nat. ETH, is head of the Imaging Section at the Okinawa Institute of Science and Technology, Onna son, Okinawa, Japan. He is awarded a research professorship at Juntendo University, Tokyo, Japan. He got his PhD at the Federal Institute of Technology, ETH, Zurich, Switzerland, with Prof. Hans Moor and Dr. Martin Müller, both pioneers in cryo-electron microscopy (high-pressure freezing, freeze-fracturing, freeze-substitution and low-temperature embedding, cryo-SEM, cryo-sectioning). His research focuses on sample preparation for optimal, life-like imaging of biological objects in the electron microscope. The main interests are preparation methods based on cryo-fixation applied in Cell Biology. From here, hybrid follow-up methods like freeze-substitution or freeze-fracturing are used. He is also involved in immunolabelling technology, e.g., ultra-small gold particles and has been working on techniques for correlative microscopy and volume microscopy for a couple of years. He teaches cryo-techniques and immunolabelling and correlative microscopy in international workshops and has professional affiliations with Zhejiang University, Hangzhou, People's Republic of China as a distinguished professor and co-director of the
Center of Cryo-Electron Microscopy and with the Federal University of Minas Gerais, Belo Horizonte, Brazil, as a FAPEMIG visiting professor at the Centro de Microscopia da UFMG.