Mechanical oscillators in Lagrange's formalism – a thorough problem-solved approach

This book takes a logically organized, clear and thorough problem-solved approach at instructing the reader in the application of Lagrange's formalism to derive mathematical models for mechanical oscillatory systems, while laying a foundation for vibration engineering analyses and design.

Each chapter contains brief introductory theory portions, followed by a large number of fully solved examples. These problems, inherent in the design and analysis of mechanical systems and engineering structures, are characterised by a complexity and originality that is rarely found in textbooks.

Numerous pedagogical features, explanations and unique techniques that stem from the authors’ extensive teaching and research experience are included in the text in order to aid the reader with comprehension and retention. The book is rich visually, including numerous original figures with high-standard sketches and illustrations of mechanisms.

Key features:

- Distinctive content including a large number of different and original oscillatory examples, ranging from simple to very complex ones.
- Contains many important and useful hints for treating mechanical oscillatory systems.
- Each chapter is enriched with an Outline and Objectives, Chapter Review and Helpful Hints.
Mechanical Vibration: Fundamentals with Solved Examples is essential reading for senior and graduate students studying vibration, university professors, and researchers in industry.

ABOUT THE AUTHOR

Ivana Kovač, University of Novi Sad, Serbia

Ivana Kovač graduated in Mechanical Engineering from the Faculty of Technical Sciences (FTN), University of Novi Sad, Serbia. She obtained her MSc and PhD in the Theory of Nonlinear Vibrations at the FTN. She is currently a Full Professor of Mechanics at the FTN and the head of the Centre of Excellence for Vibro-Acoustic Systems and Signal Processing CEVAS at the same faculty. Kovač is the Subject Editor of three academic journals: the Journal of Sound and Vibration, the European Journal of Mechanics A/Solids and Meccanica. Her research involves the use of quantitative and qualitative methods to study differential equations arising from nonlinear dynamics problems mainly in mechanical engineering, and recently also in biomechanics and tree vibrations.

Dragi Radomirović, University of Novi Sad, Serbia

Dragi Radomirović graduated in Mechanical Engineering from the Faculty of Technical Sciences (FTN), University of Novi Sad (UNS), Serbia. He obtained his MSc and PhD in Analytical Mechanics at the FTN. He is a Full Professor of Mechanics at the Faculty of Agriculture, UNS. His research interests are directed towards Mechanical Vibrations and Analytical Mechanics.

To purchase this product, please visit https://www.wiley.com/en-us/9781118675151