The offshore wind sector’s trend towards larger turbines, bigger wind farm projects and greater distance to shore has a critical impact on grid connection requirements for offshore wind power plants. This important reference sets out the fundamentals and latest innovations in electrical systems and control strategies deployed in offshore electricity grids for wind power integration.

Includes:

- All current and emerging technologies for offshore wind integration and trends in energy storage systems, fault limiters, superconducting cables and gas-insulated transformers

- Protection of offshore wind farms illustrating numerous system integration and protection challenges through case studies

- Modelling of doubly-fed induction generators (DFIG) and full-converter wind turbines structures together with an explanation of the smart grid concept in the context of wind farms

- Comprehensive material on power electronic equipment employed in wind turbines with emphasis on enabling technologies (HVDC, STATCOM) to facilitate the connection and compensation of large-scale onshore and offshore wind farms

- Worked examples and case studies to help understand the dynamic interaction between HVDC links and offshore wind generation

- Concise description of the voltage source converter topologies, control and operation for offshore wind farm applications

- Companion website containing simulation models of the cases discussed throughout
Equipping electrical engineers for the engineering challenges in utility-scale offshore wind farms, this is an essential resource for power system and connection code designers and practitioners dealing with integration of wind generation and the modelling and control of wind turbines. It will also provide high-level support to academic researchers and advanced students in power and renewable energy as well as technical and research staff in transmission and distribution system operators and in wind turbine and electrical equipment manufacturers.

▲ ABOUT THE AUTHOR

Edgar Lenymirko Moreno-Goytia, Reader, Instituto Tecnológico de Morelia, México Dr Moreno-Goytia has researched power electronic-based equipment and measurement systems development. He designed and built a Thyristor Controlled Series Compensator and its control to operate in a voltage fluctuations environment, and has been involved in evaluating the impact of wind generation on the electrical grid. Dr Moreno-Goytia has published over thirty papers in international conferences and journals and is a member of IEEE and IET.

Olimpo Anaya-Lara, Senior Lecturer, Institute for Energy and Environment, University of Strathclyde, Glasgow, UK Dr Anaya-Lara has researched power electronic equipment, control systems development, and stability and control of power systems with increased wind energy penetration. He has developed control strategies for Flexible Alternating Current Transmission System devices (FACTS), and designed control schemes for marine applications using advanced control techniques. He is a member of the CIGRE Working Group B4-39, two International Energy Agency Annexes, also the IEEE and IET. He has published over thirty-five journals, ninety papers and co-authored three books.

David Campos-Gaona, Research Assistant, Instituto Tecnológico de Morelia, México Mr Campos-Gaona has investigated electronics-based solutions to electrical networks such as digital power meters, DSP based protection algorithms, and protection systems for wind turbines. He developed electronic equipment such as residential digital power meter with a wireless communication port. He was a research assistant with the SUPERGEN FlexNet, and is member of the IEEE. He has published several papers and conference proceedings.

Grain Philip Adam, Research Fellow, University of Strathclyde, Glasgow, UK Grain received a Ph.D. degree in power electronics from Strathclyde University in 2007. He is currently with the Department of Electronic and Electrical Engineering, Strathclyde University, and his research interests are multilevel inverters, electrical machines and power systems control and stability.
For additional product details, please visit https://www.wiley.com/en-us