DESCRIPTION

Examines in a pedagogical way all pertinent molecular and macroscopic processes that govern the distribution and fate of organic chemicals in the environment and provides simple modeling tools to quantitatively describe these processes and their interplay in a given environmental system.

- Treats fundamental aspects of chemistry, physics, and mathematical modeling as applied to environmentally relevant problems, and gives a state of the art account of the field.

- Teaches the reader how to relate the structure of a given chemical to its physical chemical properties and intrinsic reactivities.

- Provides a holistic and teachable treatment of phase partitioning and transformation processes, as well as a more focused and tailor-made presentation of physical, mathematical, and modeling aspects that apply to environmental situations of concern.

- Includes a large number of questions and problems allowing teachers to explore the depth of understanding of their students or allowing individuals who use the book for self-study to check their progress.

- Provides a companion website, which includes solutions for all problems as well as a large compilation of physical constants and compound properties.
ABOUT THE AUTHOR

Rene P. Schwarzenbach, PhD, is a Professor em. of Environmental Chemistry at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland.

Philip M. Gschwend, PhD, is Full Professor of Civil and Environmental Engineering at the Massachusetts Institute of Technology in Cambridge, Massachusetts.

Dieter M. Imboden, PhD, is a Professor em. of Environmental Physics in the Department of Environmental Sciences at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland.

RELATED RESOURCES

Student
View Student Companion Site

Instructor
View Instructor Companion Site
Contact your Rep for all inquiries

For additional product details, please visit https://www.wiley.com/en-us