Introductory Transport Phenomena by R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, and Daniel J. Klingenberg is a new introductory textbook based on the classic Bird, Stewart, Lightfoot text, Transport Phenomena. The authors’ goal in writing this book reflects topics covered in an undergraduate course. Some of the rigorous topics suitable for the advanced students have been retained.

The text covers topics such as: the transport of momentum; the transport of energy and the transport of chemical species. The organization of the material is similar to Bird/Stewart/Lightfoot, but presentation has been thoughtfully revised specifically for undergraduate students encountering these concepts for the first time.

Devoting more space to mathematical derivations and providing fuller explanations of mathematical developments—including a section of the appendix devoted to mathematical topics—allows students to comprehend transport phenomena concepts at an undergraduate level.
ABOUT THE AUTHOR

R. Byron Bird is a chemical engineer and professor emeritus in the Department of Chemical Engineering at the University of Wisconsin-Madison. He is known for his research in transport phenomena of non-Newtonian fluids, including fluid dynamics of polymers, polymer kinetic theory, and rheology.


RELATED RESOURCES

<table>
<thead>
<tr>
<th>Student</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Student Companion Site</td>
<td>View Instructor Companion Site</td>
</tr>
<tr>
<td></td>
<td>Contact your Rep for all inquiries</td>
</tr>
</tbody>
</table>

FEATURES

• This text is an undergraduate-level adaptation of the respected *Transport Phenomena* title, by Bird, Stewart and Lightfoot.

• Emphasis is placed on the similarities and differences between the development of the three types of conservation equations and their associated transport coefficients. Each may be studied at one of three different levels: molecular, microscopic and macroscopic.

• Each chapter provides a summary section and a discussion which can be used as “flipped classroom” activities.

• Mathematical derivations have been explained step-by-step, making explanations more accessible for undergraduate students.

For additional product details, please visit https://www.wiley.com/en-us