DESCRIPTION

This series provides inorganic chemists and materials scientists with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 59 continues to report recent advances with a significant, up-to-date selection of contributions by internationally-recognized researchers.

The chapters of this volume are devoted to the following topics:

• Iron Catalysis in Synthetic Chemistry
• A New Paradigm for Photodynamic Therapy Drug Design: Multifunctional, Supramolecular DNA Photomodification Agents Featuring Ru(II)/Os(II) Light Absorbers Coupled to Pt(II) or Rh(III) Bioactive Sites
• Selective Binding of Zn2+ Complexes to Non-Canonical Thymine or Uracil in DNA or RNA.
• Progress Toward the Electrocatalytic Production of Liquid Fuels from Carbon Dioxide
• Monomeric Dinitrosyl Iron Complexes: Synthesis and Reactivity
• Interactions of Nitrosoalkanes/arenes, Nitrosamines, Nitrosothiols, and Alkyl Nitrites with Metals
• Aminopyridine Iron and Manganese Complexes as Molecular Catalysts for Challenging Oxidative Transformations
ABOUT THE AUTHOR

Kenneth D. Karlin, PhD, is the Ira Remsen Professor of Chemistry at Johns Hopkins University. He received his PhD from Columbia University. Dr. Karlin's bioinorganic research focuses on coordination chemistry relevant to biological and environmental processes, involving copper or heme (porphyrin-iron) complexes. Dr. Karlin’s main approach involves synthetic modeling, i.e. biomimetic chemistry. He is the winner of the prestigious F. Albert Cotton Award in Synthetic Inorganic Chemistry and the Sierra Nevada Distinguished Chemist Award, both awarded in 2009.

SERIES

Progress in Inorganic Chemistry

To purchase this product, please visit https://www.wiley.com/en-us/9781118870037