An essential resource for optimizing energy systems to enhance design capability, performance and sustainability

Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability.

Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction.

Key features:

- Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications.
- Examples, practical applications and case studies to put theory into practice.
- Study problems at the end of each chapter that foster critical thinking and skill development.
- Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities.
A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, *Optimization of Energy Systems* is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.

ABOUT THE AUTHOR

IBRAHIM DINCER is a tenured full professor of Mechanical Engineering in the Faculty of Engineering and Applied Science at UOIT. He is Vice President for Strategy in International Association for Hydrogen Energy (IAHE) and Vice-President for World Society of Sustainable Energy Technologies (WSSET). Renowned for his pioneering works in the area of sustainable energy technologies he has authored and co-authored numerous books and book chapters, more than a thousand refereed journal and conference papers, and many technical reports. He has chaired many national and international conferences, symposia, workshops and technical meetings. He has delivered more than 300 keynote and invited lectures. He is an active member of various international scientific organizations and societies, and serves as editor-in-chief, associate editor, regional editor, and editorial board member on various prestigious international journals. He is a recipient of several research, teaching and service awards, including the Premier's research excellence award in Ontario, Canada, in 2004.

MARC A. ROSEN is a professor of Mechanical Engineering at the University of Ontario Institute of Technology in Oshawa, Canada, where he served as founding Dean of Engineering and Applied Science. Dr. Rosen is an active teacher and researcher in thermodynamics, energy technology, sustainable energy and the environmental impact of energy and industrial systems. He is a registered Professional Engineer in Ontario, and has served in many professional capacities, including being founding Editor-in-Chief of several journals, and a Director of Oshawa Power and Utilities Corporation. A Past-President of the Engineering Institute of Canada and the Canadian Society for Mechanical Engineering, Dr. Rosen received an Award of Excellence in Research and Technology Development from the Ontario Ministry of Environment and Energy, and is a Fellow of the Engineering Institute of Canada, the American Society of Mechanical Engineers, the Canadian Society for Mechanical Engineering, the Canadian Academy of Engineering and the International Energy Foundation.

POURIA AHMADI is a postdoctoral fellow in the Fuel Cell Research group at Simon Fraser University (SFU). He earned his PhD in 2013 in mechanical engineering at the Clean Energy Research Lab at University of Ontario Institute of Technology, Canada. There, he worked on the design, analysis and optimization of advanced integrated energy systems for enhanced sustainability. Prior to joining SFU, he was a postdoctoral fellow at Ryerson University in Toronto, Ontario, where he worked on integrated renewable energy technologies for a net zero energy community in London, Ontario, Canada. He also worked as a
research assistant and PhD student at the advanced heat transfer lab at Sharif University of Technology, Tehran, Iran. He has 65 publications in both high ranked and peer-reviewed journals and international conference proceedings.

For additional product details, please visit https://www.wiley.com/en-us