Raymond H. Myers, Douglas C. Montgomery, Christine M. Anderson-Cook

<table>
<thead>
<tr>
<th>Format</th>
<th>ISBN</th>
<th>Date</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Book</td>
<td>978-1-118-91603-2</td>
<td>January 2016</td>
<td>$124.99</td>
</tr>
<tr>
<td>Hardcover</td>
<td>978-1-118-91601-8</td>
<td>February 2016</td>
<td>$156.00</td>
</tr>
</tbody>
</table>

DESCRIPTION

Praise for the Third Edition:

“This new third edition has been substantially rewritten and updated with new topics and material, new examples and exercises, and to more fully illustrate modern applications of RSM.”

- Zentralblatt Math

Featuring a substantial revision, the Fourth Edition of Response Surface Methodology: Process and Product Optimization Using Designed Experiments presents updated coverage on the underlying theory and applications of response surface methodology (RSM). Providing the assumptions and conditions necessary to successfully apply RSM in modern applications, the new edition covers classical and modern response surface designs in order to present a clear connection between the designs and analyses in RSM.

With multiple revised sections with new topics and expanded coverage, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition includes:

- Many updates on topics such as optimal designs, optimization techniques, robust parameter design, methods for design evaluation, computer-generated designs, multiple response optimization, and non-normal responses
- Additional coverage on topics such as experiments with computer models, definitive screening designs, and data measured with error
• Expanded integration of examples and experiments, which present up-to-date software applications, such as JMP®, SAS, and Design-Expert®, throughout

• An extensive references section to help readers stay up-to-date with leading research in the field of RSM

An ideal textbook for upper-undergraduate and graduate-level courses in statistics, engineering, and chemical/physical sciences, *Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition* is also a useful reference for applied statisticians and engineers in disciplines such as quality, process, and chemistry.

ABOUT THE AUTHOR

Raymond H. Myers, PhD, is Professor Emeritus in the Department of Statistics at Virginia Polytechnic Institute and State University. He has more than 40 years of academic experience in the areas of experimental design and analysis, response surface analysis, and designs for nonlinear models. A Fellow of the American Statistical Association (ASA) and the American Society for Quality (ASQ), Dr. Myers has authored numerous journal articles and books, including *Generalized Linear Models: with Applications in Engineering and the Sciences, Second Edition*, also published by Wiley.

Douglas C. Montgomery, PhD, is Regents’ Professor of Industrial Engineering and Arizona State University Foundation Professor of Engineering. Dr. Montgomery has more than 30 years of academic and consulting experience and his research interest includes the design and analysis of experiments. He is a Fellow of the ASA and the Institute of Industrial Engineers, and an Honorary Member of the ASQ. He has authored numerous journal articles and books, including *Design and Analysis of Experiments, Eighth Edition; Generalized Linear Models: with Applications in Engineering and the Sciences, Second Edition; Introduction to Introduction to Linear Regression Analysis, Fifth Edition; and Introduction to Time Series Analysis and Forecasting, Second Edition*, all published by Wiley.

Christine M. Anderson-Cook, PhD, is a Research Scientist and Project Leader in the Statistical Sciences Group at the Los Alamos National Laboratory, New Mexico. Dr. Anderson-Cook has over 20 years of academic and consulting experience, and has written numerous journal articles on the topics of design of experiments, response surface methodology and reliability. She is a Fellow of the ASA and the ASQ.