Electrochemical Power Sources (EPS) provides in a concise way the operational features, major types, and applications of batteries, fuel cells, and supercapacitors

- Details the design, operational features, and applications of batteries, fuel cells, and supercapacitors
- Covers improvements of existing EPSs and the development of new kinds of EPS as the results of intense R&D work
- Provides outlook for future trends in fuel cells and batteries
- Covers the most typical battery types, fuel cells and supercapacitors; such as zinc-carbon batteries, alkaline manganese dioxide batteries, mercury-zinc cells, lead-acid batteries, cadmium storage batteries, silver-zinc batteries and modern lithium batteries

ABOUT THE AUTHOR

The Late Vladimir S. Bagotsky (2013) was an acclaimed scientist in the field of electrochemical phenomena. He has worked as the Head of Department at the Moscow Power Sources Institute, supervising development of fuel cells for various national and international projects. For 20 years, he was the Head of Department and Principal Scientist at the A.N. Frumkin Institute of
Electrochemistry. He has published more than 400 papers in scientific journals such as the Russian Journal of Electrochemistry and The Journal of Power Sources.

Alexander M. Skundin, PhD is a chief scientist at the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of sciences. He is one of the main experts on lithium batteries in Russia.

Yurij M. Volfkovich, PhD, is chief scientist at the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of sciences, and is one of the main experts on supercapacitors in Russia.

SERIES

The ECS Series of Texts and Monographs

For additional product details, please visit https://www.wiley.com/en-us