DESCRIPTION

The first book applying HBFEM to practical electronic nonlinear field and circuit problems

- Examines and solves wide aspects of practical electrical and electronic nonlinear field and circuit problems presented by HBFEM
- Combines the latest research work with essential background knowledge, providing an all-encompassing reference for researchers, power engineers and students of applied electromagnetics analysis
- There are very few books dealing with the solution of nonlinear electric- power-related problems
- The contents are based on the authors’ many years’ research and industry experience; they approach the subject in a well-designed and logical way
- It is expected that HBFEM will become a more useful and practical technique over the next 5 years due to the HVDC power system, renewable energy system and Smart Grid, HF magnetic used in DC/DC converter, and Multi-pulse transformer for HVDC power supply
- HBFEM can provide effective and economic solutions to R&D product development
- Includes Matlab exercises
ABOUT THE AUTHOR

Junwei Lu, Professor, Griffith School of Engineering, Griffith University, Australia. Professor Lu has developed Harmonic Balance FEM techniques for nonlinear magnetics and Time Domain FEM techniques for wave propagation problems, and has been working in this area since 1985. He has taught numerical techniques in EM, power electronics and electric machines, power transmission and distribution, advanced communications systems since 1993. He holds over 10 international patents related to smart antennas arrays, high frequency transformers and inductor, and other high frequency magnetic devices. His research interests include Computational Electromagnetics, EMC computer modelling and simulation, high frequency magnetics, smart mobile terminal antennas, MEMS devices, and smart transformer used in renewable energy system and smart grid, and EV technology.

Xiaojun Zhao is researcher at the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source, North China Electric Power University, China. His main research interests are engineering electromagnetic field analysis, DC bias phenomena in power transformers, and modeling properties of magnetic material.

Sotoshi Yamada received the B.E. and M.E. degrees from the Department of Electrical Engineering, Kanazawa University, Kanazawa, Japan, in 1972 and 1974, respectively. He received the Dr. Eng. degree from Kyushu University, Fukuoka, Japan, in 1985. From 1974 to 1992, he was with the Department of Electrical and Computer Engineering, Faculty of Engineering, Kanazawa University. He has been Professor at Laboratory of Magnetic Field Control and Applications since 1992 and is engaged in research on power magnetic devices, the numerical electromagnetic field calculation, biomagnetics, etc.

RELATED RESOURCES

Instructor

View Instructor Companion Site

SERIES

Wiley - IEEE

For additional product details, please visit https://www.wiley.com/en-us