Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments.

This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed.

Key features:

- In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources.

- Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers.

- Unique coverage of quantum physical results for electron-field emission and novel electron sources with quantum effects, relevant for many applications such as electron microscopy, electron lithography, imaging and communication systems and signal processing.

- New approaches for realization of electron sources with required and optimal parameters in electronic devices such as vacuum micro and nanoelectronics.
This is an essential reference for researchers working in terahertz technology wanting to expand their knowledge of electron beam generation in vacuum and electron source quantum concepts. It is also valuable to advanced students in electronics engineering and physics who want to deepen their understanding of this topic. Ultimately, the progress of the quantum nanostructure theory and technology will promote the progress and development of electron sources as main part of vacuum macro-, micro- and nanoelectronics.

About the Author

Anatoliy Evtukh, National Academy of Sciences of Ukraine, Kyiv

Hans Hartnagel, Technische Universität Darmstadt, Germany

Oktay Yilmazoglu, Technische Universität Darmstadt, Germany

Hidenori Mimura, Shizuoka University, Hamamatsu, Japan

Dimitris Pavlidis, Boston University, USA

For additional product details, please visit https://www.wiley.com/en-us