Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB
Sergey N. Makarov, Gregory M. Noetscher, Ara Nazarian

Hardcover 978-1-119-05256-2 June 2015 $156.00

DESCRIPTION

Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB ® modules with user-friendly and intuitive GUI and a highly visualized interactive output.

Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project ® Female dataset of the National library of Medicine and fully compatible with MATLAB ® and major commercial FEM/BEM electromagnetic software simulators.

This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB ® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB ® modules.
• Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules

• Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems

• Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.

RELATED RESOURCES

Student

View Student Companion Site

To purchase this product, please visit https://www.wiley.com/en-us/9781119052463