The groundbreaking book that details the fundamentals of reliability modeling and evaluation and introduces new and future technologies

*Electric Power Grid Reliability Evaluation* deals with the effective evaluation of the electric power grid and explores the role that this process plays in the planning and designing of the expansion of the power grid. The book is a guide to the theoretical approaches and processes that underpin the electric power grid and reviews the most current and emerging technologies designed to ensure reliability. The authors—noted experts in the field—also present the algorithms that have been developed for analyzing the soundness of the power grid.

A comprehensive resource, the book covers probability theory, stochastic processes, and a frequency-based approach in order to provide a theoretical foundation for reliability analysis. Throughout the book, the concepts presented are explained with illustrative examples that connect with power systems. The authors cover generation adequacy methods, and multi-node analysis which includes both multi-area as well as composite power system reliable evaluation. This important book:

- Provides a guide to the basic methods of reliability modeling and evaluation
- Contains a helpful review of the background of power system reliability evaluation
• Includes information on new technology sources that have the potential to create a more reliable power grid

• Addresses renewable energy sources and shows how they affect power outages and blackouts that pose new challenges to the power grid system

Written for engineering students and professionals, *Electric Power Grid Reliability Evaluation* is an essential book that explores the processes and algorithms for creating a sound and reliable power grid.

To purchase this product, please visit https://www.wiley.com/en-us/9781119486299