DESCRIPTION

Population ecologists study how births and deaths affect the dynamics of populations and communities, while ecosystem ecologists study how species control the flux of energy and materials through food webs and ecosystems. Although all these processes occur simultaneously in nature, the mathematical frameworks bridging the two disciplines have developed independently. Consequently, this independent development of theory has impeded the cross-fertilization of population and ecosystem ecology. Using recent developments from dynamical systems theory, this advanced undergraduate/graduate level textbook shows how to bridge the two disciplines seamlessly. The book shows how bifurcations between the solutions of models can help understand regime shifts in natural populations and ecosystems once thresholds in rates of births, deaths, consumption, competition, nutrient inputs, and decay are crossed.

*Mathematical Ecology* is essential reading for students of ecology who have had a first course in calculus and linear algebra or students in mathematics wishing to learn how dynamical systems theory can be applied to ecological problems.

ABOUT THE AUTHOR

John Pastor is Professor of Biology, at University of Minnesota Duluth, USA
• First mathematical ecology textbook to cover population ecology and ecosystem ecology

• Emphasizes how a rigorous mathematical approach to ecological questions can challenge common assumptions and lead to new areas of research

To purchase this product, please visit https://www.wiley.com/en-us/9781405177955