A comprehensive view of the current methods for modeling solvent environments with contributions from the leading researchers in the field. Throughout, the emphasis is placed on the application of such models in simulation studies of biological processes, although the coverage is sufficiently broad to extend to other systems as well. As such, this monograph treats a full range of topics, from statistical mechanics-based approaches to popular mean field formalisms, coarse-grained solvent models, more established explicit, fully atomic solvent models, and recent advances in applying ab initio methods for modeling solvent properties.

Michael Feig is Professor of Biochemistry & Molecular Biology and Chemistry at Michigan State University. His academic training began with a degree in physics from the Technical University of Berlin and continued with studies of computational chemistry at the University of Houston and at The Scripps Research Institute in San Diego, California. Prof. Feig has authored over 50 publications, most related to the solvation of biomolecules. He has recently been awarded an Alfred P. Sloan fellowship and won awards from the American Chemical Society and Sigma Xi.