About 40% of current atomic force microscopy (AFM) research is performed in liquids, making liquid-based AFM a rapidly growing and important tool for the study of biological materials. This book focuses on the underlying principles and experimental aspects of AFM under liquid, with an easy-to-follow organization intended for new AFM scientists. The book also serves as an up-to-date review of new AFM techniques developed especially for biological samples.


From the contents:

Part I: General Atomic Force Microscopy

* AFM: Basic Concepts

* Carbon Nanotube Tips in Atomic Force Microscopy with

* Applications to Imaging in Liquid

* Force Spectroscopy

* Atomic Force Microscopy in Liquid
* Fundamentals of AFM Cantilever Dynamics in Liquid Environments

* Single-Molecule Force Spectroscopy

* High-Speed AFM for Observing Dynamic Processes in Liquid Environments

* Integration of AFM with Optical Microscopy Techniques

Part II: Biological Applications

* DNA and Protein-DNA Complexes

* Single-Molecule Force Microscopy of Cellular Sensors

* AFM-Based Single-Cell Force Spectroscopy

* Nano-Surgical Manipulation of Living Cells with the AFM

⚠️ ABOUT THE AUTHOR

Arturo M Baró has spent most of his career at the Universidad Autonoma of Madrid and has been working in the field of Surface Physics and Nanoscience. In 1983, he spent one year at the IBM Research Lab in Zürich where he worked with Professors Rohrer and Binnig, who discovered STM. He is the author of 160 publications with a citation index h = 38. In 1985, he founded the company NANOTEC ELECTRONICA, S.L., which is dedicated to the fabrication and sale of AFM machines. He has been honored with the research prizes from the Humboldt Foundation.

Ronald G. Reifenberger has been on the faculty at Purdue University, W. Lafayette, USA since 1978. Following his PhD in physics from the University of Chicago, he was a post-doctoral fellow at the University of Toronto, Canada. His nanophysics laboratory at Purdue uses innovative experimental techniques to examine nanoscale properties of matter. His research focus since 1985 has been primarily scanning probe microscopy. Reifenberger is currently the director of the Kevin G. Hall Nanmetrology Laboratory in the Birck Nanotechnology Center.
at Purdue.

For additional product details, please visit https://www.wiley.com/en-us