With its strong focus on the links between theory and experiment or technological process, this book presents the latest advances in our understanding of how plasmas behave. New contributions to this second edition cover dusty plasmas, cross-correlation spectroscopy, atmospheric pressure glow discharges, as well as applications in lightening, microelectronics, polymer surface modification, sterilization, biology and medicine.

Straddling the boundaries between physics, chemistry and materials science, this is of interest to a wide community.

From reviews of the first edition:

"... it makes a highly valuable contribution to the subject area and will be accessible to scientists and engineers working in the field."

ChemPhysChem

Rainer Hippler is full professor at the Institute of Physics, University of Greifswald. Together with the Max-Planck-Institute for Plasma Physics and the Institute of Low Temperature Plasma Physics in Greifswald the University represents an important center of competence for Plasma Physics and Plasma Technology. His main subjects are complex plasmas including thin film deposition, dusty plasmas, and deposition of nano-size particles on surfaces.
Holger Kersten teaches as professor at the Institute of Experimental and Applied Physics, University of Kiel. He is working in the field of plasma physics and plasma technology, with emphasis on complex (dusty) plasmas, plasma surface interaction, and ion beam diagnostics.

Martin Schmidt is a leading scientist at the Institute of Low Temperature Plasma Physics in Greifswald, a center of application-oriented research which belongs to the Leibniz-Science Community.

Karl H. Schoenbach holds the Batten Endowed Chair for Bioelectrics at Old Dominion University in Norfolk, Virginia, where he serves as Director of the Frank Reidy Research Center for Bioelectrics, a center devoted to research on biological effects of cold plasma and pulsed electric fields.

For additional product details, please visit https://www.wiley.com/en-us