DESCRIPTION

An important reference for researchers in the field of metal-enzyme hybrid catalysis

Artificial Metalloenzymes and MetalloDNAzymes in Catalysis offers a comprehensive review of the most current strategies, developed over recent decades, for the design, synthesis, and optimization of these hybrid catalysts as well as material about their application. The contributors—noted experts in the field—present information on the preparation, characterization, and optimization of artificial metalloenzymes in a timely and authoritative manner.

The authors present a thorough examination of this interesting new platform for catalysis that combines the excellent selective recognition/binding properties of enzymes with transition metal catalysts. The text includes information on the various applications of metal-enzyme hybrid catalysts for novel reactions, offers insights into the latest advances in the field, and contains an informative perspective on the future:

• Explores the development of artificial metalloenzymes, the modern and strongly evolving research field on the verge of industrial application

• Contains a comprehensive reference to the research area of metal-enzyme hybrid catalysis that has experienced tremendous growth in recent years

• Includes contributions from leading researchers in the field

• Shows how this new catalysis combines the selective recognition/binding properties of enzymes with transition metal catalysts
Written for catalytic chemists, bioinorganic chemists, biochemists, and organic chemists, *Artificial Metalloenzymes and MetalloDNAzymes in Catalysis* offers a unique reference to the fundamentals, concepts, applications, and the most recent developments for more efficient and sustainable synthesis.

ABOUT THE AUTHOR

Montserrat Diéguez is Professor of Inorganic Chemistry at the University Rovira i Virgili in Tarragona. She focuses on the sustainable design, synthesis and screening of highly active and selective chiral catalysts for reactions.

Jan-Erling Bäckvall is Professor of Organic Chemistry at the Stockholm University, Sweden. His research includes transition metal-catalyzed organic transformations, biomimetic oxidations, and enzyme catalysis.

Oscar Pàmies is Associate Professor at the Rovira i Virgili University. His research includes asymmetric catalysis, organometallic chemistry, enzyme catalysis and combinatorial synthesis.

To purchase this product, please visit https://www.wiley.com/en-us/9783527804092