Skip to main content

Nanocellulose: From Fundamentals to Advanced Materials

E-Book

£ 120.00

*VAT

Nanocellulose: From Fundamentals to Advanced Materials

Jin Huang (Editor), Alain Dufresne (Editor), Ning Lin (Editor)

ISBN: 978-3-527-80744-4 March 2019 1440 Pages

Description

Comprehensively introduces readers to the production, modifications, and applications of nanocellulose

This book gives a thorough introduction to the structure, properties, surface modification, theory, mechanism of composites, and functional materials derived from nanocellulose. It also provides in-depth descriptions of plastics, composites, and functional nanomaterials specifically derived from cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose. It includes the most recent progress in developing a conceptual framework of nanocellulose, as well as its numerous applications in the design and manufacture of nanocomposites and functional nanomaterials. The book also looks at the relationship between structure and properties.

Featuring contributions from many noted experts in the field, Nanocellulose: From Fundamentals to Advanced Materials examines the current status of nanocomposites based on nanocelluloses. It covers surface modification of nanocellulose in the nanocomposites development; reinforcing mechanism of cellulose nanocrystals in nanocomposites; and advanced materials based on self-organization of cellulose nanocrystals. The book studies the role of cellulose nanofibrils in nanocomposites, as well as a potential application based on colloidal properties of cellulose nanocrystals. It also offers strategies to explore biomedical applications of nanocellulose.

-Provides comprehensive knowledge on the topic of nanocellulose, including the preparation, structure, properties, surface modification and strategy
-Covers new reports on the application of nanocellulose
-Summarizes three kinds of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) and their production, modification, and applications

Nanocellulose: From Fundamentals to Advanced Materials is a useful resource for specialist researchers of chemistry, materials, and nanotechnology science, as well as for researchers and students of the subject.

Preface xiii

Acknowledgments xv

1 Introduction to Nanocellulose 1
Jin Huang, Xiaozhou Ma, Guang Yang, and Dufresne Alain

1.1 Introduction 1

1.2 Preparation of Nanocellulose 2

1.2.1 Cellulose Nanocrystals 2

1.2.2 Cellulose Nanofibers 3

1.2.3 Bacterial Nanocellulose 4

1.3 Surface Modification of Nanocellulose 4

1.3.1 Esterification 7

1.3.2 Oxidation 7

1.3.3 Etherification 8

1.3.4 Amidation 8

1.3.5 Other Chemical Methods 8

1.3.6 Physical Interaction 9

1.4 Nanocellulose-Based Materials and Applications 9

1.5 Conclusions and Prospects 13

References 15

2 Structure and Properties of Cellulose Nanocrystals 21
Chunyu Chang, Junjun Hou, Peter R. Chang, and Jin Huang

2.1 Introduction 21

2.2 Extraction of Cellulose Nanocrystals 21

2.2.1 Extraction of Cellulose Nanocrystals by Acid Hydrolysis 21

2.2.2 Pretreatments of Cellulose Before Acid Hydrolysis 27

2.2.3 Other Methods of Preparing Cellulose Nanocrystals 31

2.3 Structures and Properties of Cellulose Nanocrystals 32

2.3.1 Physical Properties of Cellulose Nanocrystals 32

2.3.2 Properties of Cellulose Nanocrystal Suspension 39

References 45

3 Structure and Properties of Cellulose Nanofibrils 53
Pei Huang, Chao Wang, Yong Huang, and Min Wu

3.1 Production of CNF 53

3.1.1 Chemical Bleaching 54

3.1.2 Mechanical Disintegration 54

3.1.2.1 Homogenization 54

3.1.2.2 Grinding 58

3.1.2.3 Ball-milling 59

3.1.2.4 Ultrasonication 59

3.1.2.5 Steam Explosion 61

3.1.2.6 Aqueous Counter Collision 61

3.1.2.7 Refining 62

3.1.2.8 Cryocrushing 62

3.1.2.9 Twin-Screw Extrusion 62

3.1.2.10 Other Methods 63

3.1.3 Pretreatment 63

3.2 Features and Properties 64

3.2.1 Morphology of CNF 64

3.2.2 Rheology 64

3.2.3 CNF in Different Forms 65

3.2.3.1 Suspensions 65

3.2.3.2 Powders 66

3.2.3.3 Films 67

3.2.3.4 Hydrogels 70

3.2.3.5 Aerogels CNF 72

3.3 Conclusion 72

References 74

4 Synthesis, Structure, and Properties of Bacterial Cellulose 81
Muhammad Wajid Ullah, Sehrish Manan, Sabella J. Kiprono, Mazhar Ul-Islam, and Guang Yang

4.1 Introduction 81

4.2 Biogenesis of Bacterial Cellulose 83

4.2.1 Biochemistry of BC Synthesis 83

4.2.2 Biochemical Pathway of BC Production 85

4.2.3 Molecular Regulation of BC Synthesis 87

4.3 Structure and Exciting Features of Bacterial Cellulose 88

4.3.1 Chemical Structure and Properties 89

4.3.2 Physiological Features 89

4.3.3 Self-assembly and Crystallization 90

4.3.4 Ultrafine Thin Fibrous Structure 90

4.3.5 Macrostructure Control and Orientation 91

4.3.6 Porosity and Materials Absorption Potential of BC for Composite Synthesis 91

4.3.7 Biocompatibility 92

4.3.8 Biodegradability 92

4.4 Production of Bacterial Cellulose: Synthesis Approaches 93

4.4.1 Static Fermentative Cultivation: Production of BC Membrane, Film, or Sheet 93

4.4.2 Shaking Fermentative Cultivation: Production of BC Pellets 94

4.4.3 Agitation Fermentative Cultivation: Production of BC Granules 94

4.4.3.1 Rotating Disk Reactor 95

4.4.3.2 Trickling Bed Reactor 95

4.5 Additives to Enhance BC Production 95

4.5.1 Carboxymethylcellulose 97

4.5.2 Organic Acids 97

4.5.3 Vitamin C 97

4.5.4 Sodium Alginate 99

4.5.5 Alcohols 99

4.5.6 SSGO 99

4.5.7 Lignosulfate 100

4.5.8 Agar and Xanthan 100

4.5.9 Thin Stillage 100

4.6 Strategies Toward Low-Cost BC Production 101

4.6.1 Fruit Juices 101

4.6.2 Sugarcane Molasses 101

4.6.3 Agricultural and Industrial Wastes 103

4.6.4 Food Wastes 104

4.7 Conclusions and Future Prospects 105

Acknowledgment 105

References 106

5 Surface Chemistry of Nanocellulose 115
Ge Zhu and Ning Lin

5.1 Brief Introduction to Nanocellulose Family 115

5.1.1 Cellulose Nanocrystals (CNCs) 115

5.1.2 Cellulose Nanofibrils (CNFs) 117

5.1.3 Bacterial Cellulose (BC) 117

5.2 Surface Modification of Nanocellulose 119

5.2.1 Physical Adsorption of Surfactants 119

5.2.2 Sulfonation 121

5.2.3 TEMPO-oxidation 122

5.2.4 Esterification 123

5.2.5 Silylation 125

5.2.6 Grafting Onto 126

5.2.7 Grafting From 131

5.2.7.1 Ring-Opening Polymerization (ROP) 132

5.2.7.2 Living Radical Polymerization (LRP) 134

5.2.8 Chemical Modification from End Hemiacetal 137

5.3 Advanced Functional Modifications 139

5.3.1 Fluorescent and Dye Molecules 139

5.3.2 Amino Acid and DNA 142

5.3.3 Self-cross-linking of Nanocrystals 144

References 145

6 Current Status of Nanocellulose-Based Nanocomposites 155
Xiaozhou Ma, Yuhuan Wang, Yang Shen, Jin Huang, and Alain Dufresne

6.1 Introduction 155

6.2 Cellulose Nanocrystal-Filled Nanocomposites 156

6.2.1 Polyolefin-Based Nanocomposites 156

6.2.2 Rubber-Based Nanocomposites 161

6.2.3 Polyester-Based Nanocomposites 164

6.2.4 Polyurethane- and Waterborne Polyurethane-Based Nanocomposites 167

6.2.5 Epoxy- and Waterborne Epoxy-Based Nanocomposites 169

6.2.6 Natural Polymer-Based Nanocomposites 171

6.3 Fibrillated Cellulose-Filled Nanocomposites 172

6.3.1 Polyolefin-Based Nanocomposites 172

6.3.2 Rubber-Based Nanocomposites 176

6.3.3 Polyester-Based Nanocomposites 178

6.3.4 Polyurethane- andWaterborne Polyurethane-Based Nanocomposites 180

6.3.5 Natural Polymer-Based Nanocomposites 182

6.3.6 Other Polymer Nanocomposites Filled with Fibrillated Cellulose 184

6.4 Conclusion and Prospect 186

References 186

7 Reinforcing Mechanism of Cellulose Nanocrystals in Nanocomposites 201
Yaoyao Chen, Lin Gan, Jin Huang, and Alain Dufresne

7.1 Percolation Approach 201

7.1.1 Mean-Field Theory 202

7.1.2 Percolation Model 204

7.1.3 Factors Influencing the Percolation Network Formation 208

7.2 Interfacial Behaviors Between Cellulose Nanocrystals and Matrix 211

7.2.1 Effect of Functional Groups on CNC Surface on Interfacial Interaction 211

7.2.2 Effect of Segmental Entanglement Mediated with Grafted Chains on CNC Surface 225

7.2.3 Role of Co-continuous Structure Derived from Chemical Coupling of Filler/Matrix 229

7.2.3.1 Thiol−ene Coupling Process Between Modified Cellulose Nanocrystals (CNCs) and Matrix 230

7.2.3.2 Huisgen Cycloaddition Click Chemistry Between Modified CNCs and Matrices 232

7.2.3.3 Schiff’s Base Reaction Between Cellulose Nanocrystals (CNCs) and Matrix 233

7.2.3.4 Esterification Reaction Between CNCs and The Matrix 237

7.2.3.5 Chemical Coupling Between Hydroxyl Groups of Matrix and Aldehyded CNCs or Modified CNCs 237

7.3 Conclusions 242

References 243

8 Role of Cellulose Nanofibrils in Polymer Nanocomposites 251
Thiago H. S. Maia, Marília Calazans, Vitor Lima, Francys K. V.Moreira, and Alessandra de Almeida Lucas

8.1 Introduction 251

8.2 Characteristics of Cellulose Nanofibrils 252

8.3 Mechanical Properties of CNF Polymer Nanocomposites 253

8.3.1 Thermoset Resins 254

8.3.2 Thermoplastics 255

8.3.3 Waterborne Polymer Systems 257

8.4 Effects of Extrusion on Mechanical Properties of PE/CNF Nanocomposites 258

8.5 Effect of Fiber Size and Lignin Presence 264

8.6 Multifunctionality: Optical and Barrier Properties of CNF Nanocomposites 267

8.7 Outlooks in CNF Nanocomposites 269

References 269

9 Advanced Materials Based on Self-assembly of Cellulose Nanocrystals 277
Lin Gan, Siyuan Liu, Dong Li, and Jin Huang

9.1 Self-assembly Structure of CNCs 277

9.1.1 Structure of CNC Liquid Crystals 278

9.1.2 Components of CNC Self-assembly 279

9.1.3 Form of CNC Self-assembly Products 279

9.2 Self-assembly Methods and Materials 281

9.2.1 Casting Method and Spin Coating Method 281

9.2.2 Vacuum-Assisted Self-assembly 283

9.2.3 Evaporation-Induced Self-assembly 284

9.3 Structural Adjustment of CNC Self-assembly 284

9.3.1 Cholesteric Structure of Neat CNC Films 284

9.3.2 Cholesteric Structure and Cross-linking Structure in Gel 286

9.3.3 Cholesteric Structure in Bulk Materials of CNC Composite Self-assembly 288

9.3.4 Nematic Structure 290

9.4 Modifying Surface Chemical Structure of CNC 291

9.5 Properties of CNC Self-assembly 295

9.5.1 Mechanical Properties 295

9.5.1.1 Mechanical Properties of CNC Films 295

9.5.1.2 Mechanical Properties of CNC Composite Films 295

9.5.2 Iridescent Color 298

9.5.2.1 Iridescent Color Control of CNC Films 298

9.5.2.2 Iridescent Color Control of CNC Composite Materials 300

9.5.2.3 Optical Control of CNC Self-assembly Gels 302

9.5.3 Plasmonic Properties of CNC 304

9.6 Potential Applications 305

9.6.1 Oil/Water Separation 305

9.6.2 Application of Optical Materials 306

9.6.2.1 Optical Application of CNC Films 306

9.6.2.2 Optical Application of CNC Composite Films 306

9.6.3 Sensors 307

References 309

10 Potential Application Based on Colloidal Properties of Cellulose Nanocrystals 315
Shiyu Fu and Linxin Zhong

10.1 Colloidal Properties of CNC and Applications in Functional Materials 315

10.2 Nanocellulose for Paper and Packaging 324

10.2.1 Nanocellulose for Paper Coating 326

10.2.2 Microfibrillated Cellulose Coated Paper for Delivery System 328

10.2.3 Water-Resistant Nanopaper Based on Modified Nanocellulose 329

10.2.4 Effect of Chemical Composition on Microfibrillar Cellulose Film 334

10.2.5 Antimicrobial Diffusion Films Based on Microfibrillated Cellulose 336

10.3 Nanocellulose for Wood Coatings 339

References 341

11 Strategies to Explore Biomedical Application of Nanocellulose 349
Yanjie Zhang, Peter R. Chang, Xiaozhou Ma, Ning Lin, and Jin Huang

11.1 Introduction 349

11.2 Research on Biological Toxicity of Nanocellulose 349

11.3 Application of Nanocellulose for Immobilization and Recognition of Biological Macromolecules 355

11.4 Application of Nanocellulose for Cell Imaging 360

11.5 Application of Nanocellulose for Cell Scaffolds 361

11.6 Application of Nanocellulose in Tissue Engineering 366

11.6.1 Tissue Repairing, Regeneration, and Healing 366

11.6.1.1 Skin Tissue Repairing 368

11.6.1.2 Bone Tissue Regeneration 370

11.6.2 Tissue Replacement 371

11.6.2.1 Artificial Blood Vessels 371

11.6.2.2 Soft Tissues, Meniscus, and Cartilage 373

11.6.2.3 Nucleus Pulposus Replacement 375

11.7 Application of Nanocellulose in Drug Carrier and Delivery 375

11.8 Application of Nanocellulose as Biomedical Materials 382

11.8.1 Antimicrobial Nanomaterials 382

11.8.1.1 Nanocellulose Incorporated with Inorganic Antimicrobial Agents 385

11.8.1.2 Nanocellulose Incorporated with Organic Antimicrobial Agents 386

11.8.2 Medical Composite Material 388

11.9 Summary 389

References 389

12 Application of Nanocellulose in Energy Materials and Devices 397
Gang Chen and Zhiqiang Fang

12.1 Introduction 397

12.2 Nanocellulose for Lithium Ion Batteries (LIBs) 398

12.2.1 Nanocellulose-Based Electrodes 398

12.2.2 Nanocellulose-Based Separators 401

12.2.3 Nanocellulose-Based Electrolytes 403

12.2.4 Nanocellulose-Based Binders 403

12.3 Nanocellulose for Supercapacitors 404

12.3.1 Nanocellulose As a Substrate 405

12.3.2 Nanocellulose As a Nano-template 406

12.3.3 Nanocellulose As a Mesoporous Membrane 410

12.4 Nanocellulose for Other Energy Devices 411

12.4.1 Fuel Cells 411

12.4.2 Solar Cells 412

12.4.3 Nanogenerators 414

12.5 Conclusion and Outlook 415

References 416

13 Exploration of Other High-Value Applications of Nanocellulose 423
Ruitao Cha, Xiaonan Hao, Kaiwen Mou, Keying Long, Juanjuan Li, and Xingyu Jiang

13.1 Fire Resistant Materials 423

13.1.1 Introduction 423

13.1.2 Flame Retardant Additives 424

13.1.2.1 Halogenated Flame Retardants 424

13.1.2.2 Phosphorus-Based Flame Retardants 424

13.1.2.3 Nitrogen-Based Flame Retardants 424

13.1.2.4 Silicon-Based Flame Retardants 424

13.1.2.5 Mineral Flame Retardants 425

13.1.2.6 Nanoparticles 425

13.1.3 Fire Resistance of Clay Nanopaper Based on Nanocellulose 425

13.1.4 Conclusion 432

13.2 Thermal Insulation Materials 432

13.2.1 Introduction 432

13.2.2 Thermal Building Insulation Materials 432

13.2.2.1 Mineral Wool 433

13.2.2.2 Expanded Polystyrene (EPS) 433

13.2.2.3 Polyurethane (PUR) 433

13.2.2.4 Aerogel 433

13.2.3 Thermal Insulation Performance of Nanocellulose-Based Materials 434

13.2.4 Conclusion 437

13.3 The Templated Materials 438

13.3.1 Introduction 438

13.3.2 Synthesis of Magnetic Composite Aerogels 442

13.3.3 Synthesis of Inorganic Hollow Nanotube Aerogels 454

13.3.4 The Self-assembled CNC Templates 458

13.3.5 Conclusion 464

References 464

Index 475