1.1 Overview

1.1.1 What is a geographical inquiry?
The world around us is made up of interesting places, people, cultures and environments. Geography is the subject that you study at school to learn about different places and how relationships between environments and people shape these places. Geographers question how environments function and why the world is the way it is. They explore geographic issues and challenges facing us today, predict outcomes and come up with possible solutions for the future. Geographers are active and responsible citizens, who are informed about our world and are capable of shaping the future.

Have you ever visited or gone on holidays to a place other than where you live? If so you have probably noticed that some of the features and characteristics of the people and places are similar and some are different. Studying Geography at school provides you with the skills, the knowledge...
and the tools to learn about and understand the relationships between the world’s people, places and environments.

As a geographer you get to ask questions and then seek to answer them. Geographers use what is called an inquiry approach to help them learn about and understand the world around them. This could involve you working individually, or as part of a group, to discover the answer to a geographical question, using a variety of geographical skills, tools and concepts.

Geographers also look at many interesting issues which face the world today; for example, different people have different viewpoints, or perspectives, about what we should do about climate change. The answer to this question might vary for an individual, a local area, a country or even on a world scale.

1.1.2 What are inquiry skills?

Have you ever noticed that young children ask many questions as they begin to learn because they are curious about the world around them? Below are some examples of questions which we can call geographical questions:

- Why are there many different types of landscapes around the world and how are they formed?
- Where is the best place to live?
- How can we look after our water resources so we have enough for the future?
- What are the effects of tourism in different places?

Geographical inquiry skills develop your ability to collect, process and communicate information.

Acquiring geographical information

Acquiring or collecting geographical information needs to be focused and well planned. Begin a geographical inquiry by developing a problem or issue to investigate. This will be the general theme of your inquiry. Develop a few geographical questions that will help you study your issue or problem. Ensure that your questions are not so broad that they will be difficult to investigate, for example water management in Australia, or so specific that you won’t be able to find enough information to support your inquiry.

Think about how you will collect information about your inquiry. You should include both primary geographical data and information from secondary sources. Primary data is information that you have collected yourself using fieldwork. Secondary sources are data that has been collected and processed by someone else, or written by someone else. Secondary sources include websites, books and brochures. Once you have decided on the information you need, plan your investigation and carry out your fieldwork and collate information from secondary sources.

Processing geographical information

Before you begin processing the information you have collected, you should evaluate the sources and techniques you have used to determine whether they are reliable and free from bias. Can you trust the sources of information? Did you carry out your fieldwork techniques thoroughly and with care? Present your information in a range of different forms. This might include graphs, tables, diagrams, sketch maps and annotated photographs. You might also write paragraphs explaining your results. Look at the information you have collected and reflect on your research questions. At this stage you can start to interpret the information. Did you answer your research questions? What are the answers to your research questions? Analyse the findings of your research and draw conclusions.

Communicating geographical information

You can choose to communicate your research findings in a range of ways. Consider who you will be presenting your findings to. Choose methods to communicate your information that are appropriate to your audience. Explain how you undertook your investigation and your findings. Propose actions that you think should be taken to address your problem or issue, and explain why you think this is the right course of action. If possible, take action yourself to address the geographical issue you have chosen.
1.1.3 What are geographical tools?

Geographers use a range of tools to help them collect information during a geographical inquiry. Geographical tools include:

- maps
- fieldwork
- graphs and statistics
- spatial technologies
- visual representations.

Maps

Maps are the most basic tool of the geographer as they are possibly the most effective way to locate, represent, display and record spatial information. These days, geographers are able to use, and create, both digital and non-digital maps.

Political maps are common; they show the boundaries of countries, states and regions, and usually show major cities and bodies of water. Topographic maps and relief maps show the shape of the land on a map. Sketch maps are hand drawn maps which show only the most basic details. Maps can be used to show information about particular themes, such as choropleth maps or flowline maps. Precis maps show a basic summary of information found on a topographic map.

FIGURE 2 A political map of Africa showing the boundaries of countries.
FIGURE 3 A flow line map shows the movement of oil trade around the world.

It is important for geographers to develop skills in map reading to be able to use all the information found. Mapping skills include being able to determine direction, and use the scale of the map to determine distance between different places. Geographers use lines drawn on maps to determine and communicate the location of different places. On some maps lines of latitude and longitude are shown to help us locate places.

Fieldwork
There is nothing better than going into an environment, or to visit a place, that you are studying. Seeing something first-hand provides a better understanding than reading about it or looking at it in photographs. That is why fieldwork is such an important, and compulsory, part of your studies.

Fieldwork involves observing, measuring, collecting and recording information and data outside the classroom.
Fieldwork can be undertaken within the school grounds, around the local neighbouring area or at more distant locations. We can use tools such as weather instruments, identification charts, photographs and measuring devices to collect information about our environment. Sometimes it may be necessary to use information and communication technology to undertake virtual fieldwork.

Graphs and statistics

Often geographers collect information as numbers. Examples include traffic counts and surveys. These numbers are called statistics. On a field trip you might count the number of pedestrians on a footpath in a given period of time. Statistics which are collected and not processed or analysed yet are called primary data. Statistics which have been processed or analysed by someone are called secondary data.

A simple and effective way geographers present statistics or data is through the use of graphs. There are many different types of graphs that can be used. The most common types of graphs you will use in this resource are column graphs, pie graphs, climate graphs, population profiles and data tables.

Graphs and statistics allow us to easily identify trends and patterns and to make comparisons. Using statistics helps us to find patterns in the information we have collected. This will help us to draw conclusions about the themes we have investigated.

FIGURE 6 Australia's leading exports of goods and services in A$ million

FIGURE 7 Trends and forecasts in tourist arrivals
Spatial technologies

Spatial technologies involve using satellite information and virtual maps to explore and record information. When you use Global Positioning System (GPS) or Google Earth you are using a form of spatial technology. Spatial technologies are any software or hardware that interact with real-world locations. Geographic information systems (GIS) are another commonly used spatial technology. They help us analyse, display and record spatial data.

FIGURE 8 A false-colour satellite image of the Mt Lofty Ranges

- Urban areas show as pale blue
- Healthy vegetation and new crops appear as bright red
- Long, snake-like line is the Murray River
- Dark blue or black areas show deep water
- The aqua blue areas show shallower water

Visual representations

A visual representation is an effective way of showing complex information using pictures, symbols and diagrams. Examples of visual representations include photographs, field sketches, cartoons and infographics. They are used to display, analyse and communicate geographical data and information.

FIGURE 10 This visual representation of the water cycle and factors that affect flooding includes information and images to help you understand geographical processes.
1.2 Geographical concepts

1.2.1 Overview

Geographical concepts help you to make sense of your world. By using these concepts you can both investigate and understand the world you live in, and you can use them to try to imagine a different world. The concepts help you to think geographically. There are seven major concepts: **space**, **place**, **interconnection**, **change**, **environment**, **sustainability** and **scale**.

A way to remember these seven concepts is to think of the term SPICESS (see right).

1.2.2 What is space?

Everything has a location on the space that is the surface of the Earth, and studying the effects of location, the distribution of things across this space, and how it is organised and managed by people, helps us to understand why the world is like it is.

A place can be described by its absolute location (latitude and longitude), a grid reference, a street directory reference or an address. A place can also be described using a relative location — where is it in relation to another place in terms of distance and direction?

FIGURE 1 A topographic map extract of Narre Warren in 2013, a suburb on the rural–urban fringe of Melbourne
Geographers also study how features are distributed across space, the patterns they form and how they interconnect with other characteristics. For example, tropical rainforests are distributed in a broad line across tropical regions of the world, in a similar pattern to the distribution of high rainfall and high temperatures.

ACTIVITIES

1. Using an atlas, give the absolute location for
 Melbourne, Australia. Refer to figure 1.
2. Identify the feature at the following locations:
 a. GR496895
 b. GR494880.
3. Using the grid references on the topographic map, give the absolute location for:
 a. Narre Warren station (north-east of map)
 b. the intersection of Eureka Rd and Pound Rd.
4. Describe the location of Narre Warren station relative to the River Gum Creek Reserve (GR488887). Use distance and direction in your answer.
5. Describe the distribution pattern of creeks and drains in the map area.
6. Explain the influence of the creeks and drains on the distribution of streets and houses.
7. Describe the use of space shown on this map.

1.2.3 What is place?

Everywhere is a place. Each of the world’s biomes—for example, a desert environment—can be considered a place, and within each biome there are different places, such as the Sahara Desert. There can be natural places—an oasis is a good example—or man-made places such as Las Vegas. Places can have different functions and activities—for example, Canberra has a focus as an administration centre, while the MCG is a place for major sporting events and the Great Barrier Reef is a place of great natural beauty and a coral reef biome. People are interconnected to places and people in a wide variety of ways—for example, when we move between places or connect electronically via computers. We are connected to the places that we live in or know well, such as our neighbourhood or favourite holiday destination.

ACTIVITIES

Refer to figure 2.
1. Why do you think people have changed this place by building greenhouses there?
2. What characteristics of a desert biome are being altered in this place?
3. What features might this location have for the production of food?
4. What would be the advantages and disadvantages of greenhouse farming?
5. Suggest the types of crops that would be suitable for greenhouse farming.
6. List ways in which people living in other places in Europe may be interconnected to the greenhouses in Almeria.
1.2.4 What is interconnection?

People and things are connected to other people and things in their own and other places, and understanding these connections helps us to understand how and why places are changing.

The interconnection between people and environments in one place can lead to changes in another location. The damming of a river upstream can significantly alter the river environment downstream and affect the people who depend on it. Similarly, the economic development of a place can influence its population characteristics; for example, an isolated mining town will tend to attract a large percentage of young males, while a coastal town with a mild climate will attract retirees who will require different services. The economies and populations of places are interconnected.

ACTIVITIES

Refer to figure 3.

1. What is the interconnection between the physical characteristics of Bangladesh and its flood risk?
2. What is the interconnection between human activities and Bangladesh’s flood risk?
3. Use information from the figure to construct a flow diagram to show the interconnection between human activities and natural processes (increased risk of flooding) in Bangladesh.
4. How might an increase in the number and severity of floods affect:
 a. people’s wellbeing
 b. economic development in the country?
5. Considering the interconnections that you have identified, suggest some possible steps that could be taken to reduce the impact of flooding.

FIGURE 3

Bangladesh is one of the most flood-prone countries in the world. This is due to a number of factors. Firstly, it is largely the floodplain for three major rivers (the Ganges, Brahmaputra and Meghna), which all carry large volumes of water and silt. Secondly, being a floodplain, the topography therefore is very flat, which allows for large-scale flooding. In addition, the country is located at the head of the Bay of Bengal, which is susceptible to typhoons and storm surges. It is expected that sea level rises associated with global warming will increase the flooding threat even further in the future.
1.2.5 What is change?
The concept of change is about using time to better understand a place, an environment, a spatial pattern or a geographical problem.

Some changes can be fast and easily observed, but others are very slow. Cities, for example, can expand outwards over a number of years. Similarly, landforms generally change very slowly, as with the formation of mountains. But some landscape change can be very fast, as is the case with landslides, volcanic eruptions and deforestation.

FIGURE 4 The change in size of the city of Sydney over time

FIGURE 5a Landscape before deforestation

FIGURE 5b Landscape after deforestation
ACTIVITIES

Refer to figure 4.
1. How has Sydney changed over time? How long has it taken for the city to spread to the furthest areas shown on the map?
2. What main natural feature attracted the earliest settlement?
3. What impact do you think this growth has had on the natural environment?
4. What technological changes in transport have allowed Sydney to spread and grow over time? Refer to figures 5a and 5b.
5. List the changes that would have caused the slippage to occur.
6. What interconnections are there between:
 a. vegetation cover and soil stability
 b. vegetation cover and infiltration
 c. high run-off and erosion?
7. List all the effects of the landslide on people and the environment.
8. Write a summary statement about the pace of change and the impact on people and the environment in these two examples.

1.2.6 What is environment?

People live and depend on the environment, so it has an important influence on our lives. There is a strong interrelationship between humans and natural and urban environments. People depend on the environment for the source, sink, spiritual and service functions it provides.

Humans significantly alter environments, causing both positive and negative effects. The building of dams to reduce the risk of flooding, the regular supply of fresh water and the development of large-scale urban environments to improve human wellbeing are examples. On the other hand, mismanagement has created many environmental threats such as soil erosion and global warming, which have the potential to have a negative impact on the quality of life for many people.

FIGURE 6 Lake Urmia is the largest lake in the Middle East and one of the largest landlocked saltwater lakes in the world. Since 2005, the lake has lost over 65 per cent of its surface area due to over-extraction of water for domestic and agricultural needs. The lake and its surrounding wetlands are internationally important as a feeding and breeding ground for migratory birds.
For example, explaining the changing structure of the population in your local area may require an understanding of scale at local, regional, national and global levels. It is also used to look for explanations or compare outcomes.

Scale is a useful tool for examining issues from different perspectives; from the personal to the global. It is also used to look for explanations or compare outcomes. For example, explaining the changing structure of the population in your local area may require an understanding of migration patterns at a national or even global scale.

FIGURE 7 A map of India showing the distribution of literacy levels (percentage) for 2011.

Activities

1. What physical features make up this environment?
2. What features of the natural environment are consistent across the two images?
3. Describe the changes to this environment over the time period of 1998 to 2014.
4. Describe the distribution of salt flats around the lake in 1998 compared with their distribution in 2011.
5. How might the loss of water and increase in salt flats affect:
 - a) people
 - b) the environment in the surrounding region?
6. Suggest a possible future scenario for Lake Urmia:
 - a) if water continues to be extracted and withdrawn
 - b) if water withdrawals for irrigation are reduced, and water conservation methods are introduced in neighbouring places.

1.2.7 What is scale?

When we examine geographical questions at different spatial levels we are using the concept of scale to find more complete answers.

Scale is a useful tool for examining issues from different perspectives; from the personal to the local, regional, national and global. It is also used to look for explanations or compare outcomes. For example, explaining the changing structure of the population in your local area may require an understanding of migration patterns at a national or even global scale.
1.2.8 What is sustainability?

Sustainability is about maintaining the capacity of the environment to support our lives and the lives of other living creatures.

Sustainability ensures that the source, sink, service and spiritual functions of the environment are maintained and managed carefully to ensure they are available for future generations. There can be variations in how people perceive sustainable use of environments and resources. Some people think that technology will provide solutions, while others believe that sustainable management involves environmental benefits and social justice.

This concept can also be applied to the social and economic sustainability of places and their communities, which may be threatened by changes such as the degradation of the environment. Land degradation in the Sahel region of Africa has often forced people, especially young men, off their land and into cities in search of work.

FIGURE 8 Dust storms are an extreme form of land degradation. Dry, unprotected topsoil is easily picked up and carried large distances by wind before being deposited in other places. Drought, deforestation and poor farming techniques are usually the cause of soil being exposed to the erosional forces of wind and water. It may take thousands of years for a new topsoil layer to form. Therefore, any land practices that lead to a loss of topsoil may be considered unsustainable.
1.3 Work and careers in Geography

1.3.1 Geographic skills and future work

Geographic skills will be useful for your future employment. Your understanding of Geography and its application to manage sustainable futures will be pivotal knowledge that will be desirable to future employers. In Geography, students are developing an understanding of the world. The skills you develop in Geography are transferrable to the workplace and can be used as a basis for evaluating strategies for the sustainable use and management of the world’s resources.

Skills for work

Geography is a foundational skill for many occupations. Learning to navigate further education and training paths will help you to understand the variety of occupations that the study of Geography can lead to. The study of Geography includes important geospatial and spatial technology skills. These skills underpin the knowledge base of a range of courses and careers. Start your pathways exploration by considering who may use the key geospatial and spatial technologies.

- Geospatial skills – the ability to collect and collate information gathered from fieldwork and observations. Geospatial skills are used in careers such as surveying, meteorology, agricultural scientist, and urban planning.
- Spatial technologies – technologies that demonstrate the connections between location, people and activities in digital formats. Jobs in the spatial industry are varied including working in business and government. Spatial technologies apply many techniques such as photogrammetry, remote sensing, and global positioning systems (GPS). Spatial technologies manage information about the environment, transportation and other utility systems.

FIGURE 1 GIS (Geographic Information Systems) being used to manage spaces and plan escape routes during a fire.

FIGURE 2 Using GPS to survey and record road traffic movements for a local council.

Refer to figure 8.
1. Complete the following table with examples of factors contributing to soil erosion.

<table>
<thead>
<tr>
<th>Natural factors contributing to soil erosion</th>
<th>Human factors contributing to soil erosion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Explain how the *interconnection* of human activities and natural processes can contribute to land degradation.

3. Describe the impacts of the dust storm on people living in these two different places:
 - a. rural areas (source of the soil)
 - b. the urban area shown in the image.

4. What are the long-term implications of the *unsustainable* use of soil?

5. How can farming be made more *sustainable* in terms of soil conservation?
1.3.2 Where can Geography lead?
There are a range of careers that utilise Geography as a foundation skill. As you consider your pathway options for senior studies you may like to research some of the careers that are shown in figure 3.

FIGURE 3 Geography pathways

- **Landscape architect**
 Landscape architects use geographic skills to plan and design land areas for large scale projects such as housing estates, schools, hospitals, parks and gardens.

- **Surveyor**
 Surveyors use geographic skills to measure, analyse and report on land-related information for planning and development.

- **Meteorologist**
 Meteorologists use geographic skills to forecast the weather, study the atmosphere and understand climate change.

- **Park ranger**
 Park rangers use geographic skills to support and maintain ecosystems in national parks, scenic areas, historic sites, nature reserves and other recreational areas.

- **Agricultural technician**
 Agricultural technicians use geographic skills to support and advise farmers on aspects of agriculture such as crop yield, farming methods, production and marketing.

ACTIVITIES

1. Select an occupational profile that has been presented in figure 3. Use eBookPLUS the Job Outlook weblink in your eBookPlus to explore a career that interests you. Job Outlook is a federal government website that provides information on employment in a range of occupations. It also includes information on the training, skills and tools needed for the career that you are researching.

2. Develop a careers profile for your occupation of choice. In your profile include:
 - the geographic skills needed for this job
 - the geographical tools that may be used in this occupation
 - the study and training requirements that lead to this occupation

3. Develop a job description for one of the occupations. Highlight the geographic skills required, the tools they will work with and core skills for work that are essential for the position.

eBookplus

Weblink

Job Outlook
1.3.3 Geography in a changing world
As the world’s population increases and the impacts of environmental changes affect living conditions, people and organisations will need to adapt and develop strategies to manage and sustain fragile environments and resources. Land degradation, marine pollution and feeding the future world populations are just three environmental challenges which will be the focus for many occupations in the future. Which careers will be helpful in managing environmental change?

| TABLE 1: Careers that use geographic skills to help manage environmental change |
|---------------------------------|---|
| Conservationists | Conservationists work to find solutions to land degradation. They may work for governments on policy development in relation to national parks, or with local communities on environmental protection projects. |
| Oceanographers | Work for oceanographers will mainly involve research and monitoring of the marine environment. They may work for governments providing data and advice on pollution levels or they may work for private or not-for-profit organisations helping to develop and implement solutions to clean up the oceans. |
| Agricultural scientists | Agricultural scientists will be employed by the government and agriculture and horticulture producers. They may work with farmer groups and agribusiness to do research, and with mining companies on regeneration projects. |

Profile of a geographer
Geographers have a love of learning. They are the explorers of the modern world. Geographers are lifelong learners; they expand their knowledge to adapt their skills to the tasks required.

- Expansion of knowledge requires a willingness to learn. How many of these skills and attributes have you developed?
 - Willingness to learn
 - Curious and adaptable
 - Active listening
 - Good communication
 - Critical thinking
 - Time management
 - Problem solving.

- By developing your geographical skills alongside your work attributes you will ensure that as you progress through your career goals the skills that you develop in geography will be part of your lifelong learning. You can develop your skills and work attributes by undertaking work experience or volunteering activities while you are still at school.

1.3.4 The importance of work experience
Understanding how people are interconnected through the career choices they make will help you build knowledge of occupations and how they work together. The activities you undertake in Geography will prove useful in developing, building and managing your career options. Another way to build your knowledge of geography and the career paths that lead from it is to undertake work experience in the field. Work experience can help you to understand the tasks and training required to specialise in a particular industry. You gain first-hand experience through observation and participating in the day-to-day tasks of workplaces.

Volunteering
Volunteering in your community is a great way to find out about different work environments and what impacts on the delivery of the services or programs. Volunteering your time to support local communities and businesses demonstrates your willingness to learn and support others and it can be a great boost to your self-confidence and skill development.

- Learning directly from industry experts through volunteering can help you to consolidate your interests while picking up valuable core skills for work. The core skills for work are considered the most important component of a career portfolio. Geography assists in developing these skills.
Thinking of volunteering? Why not consider...

Landcare
Landcare is a national network of thousands of locally-based community groups who care for the natural resources of our country.

Australian Red Cross
Australian Red Cross provides relief in times of crisis and care when it’s needed most. Whether it’s a major natural disaster or local crisis, Red Cross gives immediate and practical help with disaster recovery.

United Nations (UN) Youth
UN Youth Australia is a national youth-led organisation that aims to educate and empower young Australians on global issues.

TABLE 2 The core skills for work

<table>
<thead>
<tr>
<th>Communication</th>
<th>Use effective listening and speaking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teamwork</td>
<td>Connect and work with others</td>
</tr>
<tr>
<td>Learning</td>
<td>Recognise and utilise diverse perspectives</td>
</tr>
<tr>
<td>Plan and organise</td>
<td>Ability to develop and see things through to completion</td>
</tr>
<tr>
<td>Self-management</td>
<td>Make decisions</td>
</tr>
<tr>
<td>Problem solving</td>
<td>Identify and solve problems</td>
</tr>
<tr>
<td>Initiative and enterprise</td>
<td>Create and innovate through new ideas</td>
</tr>
<tr>
<td>Use technology</td>
<td>Work in a digital world</td>
</tr>
</tbody>
</table>

How many core skills for work have you developed? Use figure 4a to help you think about your own skills. You may find you have strengths and areas you need to improve upon. If you do this periodically, you can monitor your progress in this area. Figure 4b is an example of a completed graph.

FIGURE 4a Evaluating my core skills for work

FIGURE 4b Core skills for work — Ashley Green. Semester 1, 2017

Legend
1 = Poor
2 = Fair
3 = Good
4 = Very good
5 = Excellent
1.3.5 Future careers and Geography

Studies in Geography along with other social science subjects and evidence of your work experience or volunteering can demonstrate your adaptability, creativity and enterprise skills for future work.

In the future, the type of work that will be available will change in response to the impact of climate change, population growth and decline and technological innovation. The rapid expansion of world economies will mean that industries will adapt their workforces. Migration and a borderless world will mean that individuals will become global citizens working in large teams around the world. Many of the occupations for this century have yet to be created while others have been imagined and offer a glimpse into the future.

1.4 Review

1.4.1 Applying the concepts

Saudi Arabia is home to extensive desert regions — today, thanks to advances in technology, much of the desert is being transformed into productive farming areas. Fruits, vegetables and grains are the main crops grown, and these help to improve the country’s food security. Extensive drilling is tapping into underground aquifers as much as 1000 metres deep to access water for irrigation of water-hungry crops. Large circular sprays, called centre pivots, create a distinctive circular pattern of fields (see figure 1b).

Rainfall in the Wadi As-Sirhan Basin averages only 100–200 mm per year, which is insufficient to recharge underground aquifers. The water that is being pumped to the surface is actually ‘fossil’ water, possibly up to 20 000 years old. The volume of water that is being used for desert agriculture has more than tripled in just over 25 years.
FIGURE 1 Satellite images of the Wadi As-Sirhan Basin in Saudi Arabia. Note: Landsat imagery shows new vegetation as bright green, while dry vegetation or land lying fallow is shown as rust-coloured. Dry desert areas are shown as pink and yellow.

ACTIVITIES

1. Where is Saudi Arabia located? *(space)*
2. Looking at figure 1a, how would you describe this place? *(space)*
3. What do you think the white lines to the north-west of the image are? What does this tell you about the climate in this region? *(environment, space)*
4. Comparing the two images, describe the changes that irrigation has brought to this environment.
5. Each of the fields in figure 1b is approximately one kilometre wide. What does this indicate about the scale of this irrigation region?
6. How would the isolation of this irrigation region affect the movement of fresh produce to markets in cities? *(interconnection)*
7. Hydrologists (water engineers) believe that it will be economical to continue pumping water for only another 50 years. Is the use of groundwater sustainable in the future? *(Note: The terms in brackets are intended to help students identify which concept the question is related to.)*