Figure 7.1. Fuselage design flowchart
1. Large transport aircraft

2. Fighter aircraft

3. Light GA aircraft

4. Glider

Figure 7.2. Four generic fuselage configurations

Figure 7.3. Internal arrangement of a civil passenger and a fighter aircraft
Figure 7.4. Examples of variations in height between males and females and different ethnic groups [6]

Figure 7.5. A linear body dimensions (in cm)
1. Airbus 321 (Courtesy of Anne Deus)
2. Sukhoi Su-27U (Courtesy of Antony Osborne)
3. Piper PA-28-161 Cherokee Warrior II (Courtesy of Jenny Coffey)

Figure 7.6. Three types of aircraft with three different fuselage configurations
Figure 7.7. Seat geometry (side-view)

Figure 7.8. Basic T instrument panel
1. Cessna Citation

2. Boeing B-757 (Courtesy of A J Best)
3. Aerotechnik L-13 (Courtesy of Miloslav Storoska)

4. Extra EA-300 (Courtesy of Miloslav Storoska)

Figure 7.9. Flight decks of four civil transport aircraft
Figure 7.10. Cockpit geometry for a large transport aircraft
Figure 7.11. Cockpit geometry for a fighter aircraft

Figure 7.12. McDonnell Douglas F-15 Strike Eagle cockpit (Courtesy of Theodore J. Koniares)
Figure 7.13. Passenger cabin parameters
Figure 7.14. Seating chart of several transport aircraft (courtesy of www.seatplans.com), figure not scaled
Figure 7.15. Cabin width and cabin length (Top view)

1. Cabin of Cessna Citation
2. Boeing 777 cabin (Courtesy of Toshi Aoki)
Figure 7.16. Cabins of two transport aircraft
Figure 7.17. Cargo container
Figure 7.18. Airbus A-300 cross section
Figure 7.19. The variation of function $f_{L/D}$ with respect to slenderness ratio

Figure 7.20. Fuselage top-view for the example 7.2
Figure 7.21. Seating arrangement for the fuselage of the example 7.2

Figure 7.22. A recommended fuselage nose and tail section (Top view)
Figure 7.23. The variations of surface area versus L/D for a cylinder with a volume of 14 m3
Figure 7.24. Aerospatiale-British Aerospace Concorde with the fuselage length-to-diameter ratio 23 (Courtesy of A J Best)

Figure 7.25. Lockheed CF-104D Starfighter with wingtip fuel tanks (Courtesy of Antony Osborne)
Figure 7.26. Schematic of Airbus A380 fuel tank locations

Figure 7.27. Radar dish in the nose section of a fighter aircraft
Figure 7.28. Wing box
Figure 7.29. The fillet in a low wing configuration

Figure 7.30. Recommended top-view and side-view for a fuselage
1. Transport aircraft Ilyushin IL-76 special nose
(Courtesy of Anne Deus)
2. Optica OA-7 fuselage

Figure 7.31. Two aircraft with special fuselage noses
1. Coke bottling
2. Contributions of wing and fuselage in cross-sectional area

Figure 7.32. Area ruling
1. Boeing 747
2. Concorde

Figure 7.33. The application of area ruling in the Boeing 747 and Concorde
1. Fuselage, engine, and tail design for stealth

2. Sharp edges of fuselage

Figure 7.34. F-117 Night Hawk fuselage is designed to satisfy stealth requirements
Figure 7.35. Rear fuselage upsweep angle
Figure 7.36. Upsweep for four aircraft (aircraft drawing is not scaled)

Figure 7.37. Internal arrangement of the fuselage
Figure 7.38. Cockpit geometry (side-view)
Figure 7.39. Back-view of the cockpit

Figure 7.40. Fuselage top-view for the example 7.5
Figure 7.41. Top view of the cabin for Example 7.5 (values is cm)

Figure 7.42. Fuselage cross section
Figure 7.43. Nose section

Figure 7.44. Rear section is modeled as a cone (top-view)

Figure 7.45. Rear section is modeled as a cone (side-view)
Figure 7.46. Fuselage side-view and top-view for example 7.5

Figure 7.47. A fuselage nose and tail section
Figure 7.48. A fuselage nose and tail section

Figure 7.49. A fuselage nose and tail section