References

Chapter 1

15. Blundell J. Some account of a case of obstinate vomiting in which an attempt was made to prolong life by the injection of blood into the veins. Med Chir Trans 1819:10:296–311.
References

Chapter 2

Chapter 3

References

Chapter 4

6 Hensley S. Out for blood: the newly overhauled American Red Cross is thirsty for a surplus.html?_r=0.
10 Crookston KP. The pledge of the community blood center.
11 Whitaker BI, Sullivan M. Understanding Canadian student motivations and beliefs about giving blood.
12 Whitaker B, Hinkins S. Understanding Canadian student motivations and beliefs about giving blood.
13 Crookston KP, Koenig SC, Reyes MD. Transfusion reaction identification and management at the bedside.
15 Crookston KP. The pledge of the community blood center.
16 van Hulst M, de Wolf JT, Staginnus U, Ruitenberg EJ, Postma MJ. Pharmaco-
21 Boulware LE, Ratner LE, Nesse PM, et al. The contribution of sociodemographic, medical, and attitudinal factors to blood donation among the general public.
38 Glynn SA, Schreiber GB, Murphy EL, et al. Factors influencing the decision to donate: racial and ethnic comparisons. Transfusion 2006;46:980–90.
41 Lahiri S, Walthman E, Jager T, Crookston KP. Informing type O Rh-negative donors how their blood was used: influence on the frequency of subsequent donations [Abstract]. Transfusion 2001;41:1275.
Chapter 5

References

Chapter 6

Chapter 7

References

8 http://www.fda.gov/regulatoryinformation/legislation/federalfooddrugandcosmeticact/significantamendmentstothefdca/fdaasia/ucm20027187.htm

28 Kochman SA. Overview of the regulation of blood and cGMPs. www.fda.gov/downloads/biologicsbloodvaccines/newsevents/workshopsmeetingsconferences/ucm199689.ppt

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
44 European Economic Area (EEA). http://en.wikipedia.org/wiki/European_Economic_Area
51 PIC/S. http://pic scheme.org
52 SoGAT. http://www.sciencedirect.com/science/article/pii/S1045105698901361
References

Chapter 8

15 Xue L, Galdass M, Gnanapragasam MN, Manwani D, Bicker JF. Extrinsic and intrinsic control by Ekd/Hu (Klf1) within a specialized erythroid niche. Development 2014;141:2245–54.

122 Dai CH, Price JO, Brunner T, Krantz SB. Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon gamma to produce erythroid cell apoptosis. *Blood* 1998;91:1235–42.

References

Chapter 9

67 Shinar E, Elin S, Frenkel O, Yahalom V. The implementation of rapid cooling and overnight hold of whole blood at ambient temperature before processing into components in Israel. Transfusion 2011 Jan;51Suppl 1: 585-645.
73 Shinar E, Elin S, Frenkel O, Yahalom V. The implementation of rapid cooling and overnight hold of whole blood at ambient temperature before processing into components in Israel. Transfusion 2011 Jan;51Suppl 1: 585-645.
References

Chapter 10

References

Chapter 11

10 Beet E. Sickle-cell disease in the Balovale District of Northern Rhodesia. Heredity 1949;2:3.
45 Powars DR, Chan LS, Hiti A, Ramicone E, Johnson C. Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine (Baltimore) 2005;84:363–76.

172 Kawut SM, Bagiella E, Lederer DJ, Issitt PD, Ware RE. Erythrocyte autoimmunity compared to chronic simple transfusions. Transfusion 2012;52(12): 2671–6.
184 Ballas SK. Iron overload is a determinant of morbidity and mortality in adult patients with sickle cell disease. Semin Hemotol 2001;38:30–6.

References

Chapter 12

8 Dausset J, Colombani J. The serology and the prognosis of 128 cases of autoimmune hemolytic anemia. Blood 1959;14:1280–301.

26 Pirofsky B. Autoimmunization and the autoimmune hemolytic anemias. Balti-

more: Williams & Wilkins, 1969.

30 Pullarkat V, Ngo M, Iqbal S, Espina B, Liebman HA. Detection of lupus anti-

31 Conley CL, Lippman SM, Ness P. Autoimmune hemolytic anemia with retic-

40 Zupanska B, Brojer E, Thomson EE, Meyer AH, Seyfried H. Monocyte–erythro-

43 Janvier D, Sellami F, Missad F, et al. Severe autoimmune hemolytic anemia caused by a warm IgA autoantibody directed against the third loop of band 3 (RBC anion-
exchange protein 1). Transfusion 2002;42(12):1547–52.

54 Reynaud Q, Durieu I, Dutertre M, Petz LD. Treatment of autoimmune hemolytic anemias.

44 Blood. 2002;100(7):2104–6.

50 Collins PW, Newland AC. Treatment modalities of autoimmune blood disorders.

References

Chapter 13

12. Springer GF. Blood-group and Forssman antigenic determinant shared between a

Possible role of blood-group secretory substances

Li Y, Spellerberg MB, Stevenson FK, Capra JD, Potter KN. The I binding specificity of human Vα4 (Vα4–21) encoded antibodies is determined by both framework region 1 and complementarity determining region 3. J Mol Biol 1996;256:577–89.

169 Tilley L, Green C, Daniels G. Sequence variation in the S untranslated region of the human A4GALT gene is associated with, but does not define, the P1 blood group polymorphism. Vox Sang 2006;90:198–203.

175 Yamamoto M, Cid E, Yamamoto F. Molecular basis of the human Forssman glycolipid antigen negativity. Scientific Reports 2012;2:975, 1–8. doi: 10.1038/srep00975

Chapter 14

References

37 Mouro I, Colin Y, Sistonen P, et al. Molecular basis of the RhCw(0) (RhB8) and RhCw(+) (RhB) blood group specificities. *Blood* 1995;86:1196–201.

References

Chapter 15

1 Anstee DJ. The functional importance of blood group-active molecules in human red blood cells. Vox Sang 2011;100:140–9.

References

Chapter 16

References

Chapter 17

16 Pitchford SC, Lodie T, Rankin SM. VEGFR1 stimulates a CXCR4-dependent translocation of megakaryocytes to the vascular niche, enhancing platelet production in murine. *Blood* 2012;120:2787–95.

111 Davey MG. The survival and destruction of human platelets.

Chapter 18

References

30. Curtis BR, Aster RH. Incidence of the Nak(a)-negative platelet phenotype in African Americans is similar to that of Asians. Transfusion 1996;36:331–4.

Kiefel V, Konig C, Kroll H, Santos S. Platelet alloantibodies in transfused patients. Transfusion 2001;41:766–70.

References

Chapter 19

29. Holme S, Heaton A. In vitro platelet ageing at 22 degrees C is reduced compared to in vivo ageing at 37 degrees C. Br J Haematol 1995;91:212–18.

35. Holme S, Sawyer S, Heaton A, Sweeney JD. Studies on platelets exposed to or stored at temperatures below 20°C or above 24°C. Transfusion 1997;37:5–11.

Thioe T, Iuga, Janetters S. Early storage lesions in apheresis platelets are induced by the activation of the integrin αIIbβ3, and focal adhesion signaling pathways. J Proteomics 2012;76:297–315.

Van der Meer PF, Pietersz RNI. Gamma irradiation does not affect 7-day storage of platelet concentrates. Vox Sang 2005;89:97–9.

Van TD, Cowles J, Heal JM, Blumberg N. Platelet washing to prevent recurrent febrile reactions to leukocyte-reduced transfusions. Transfusion 2001;41:45–7.

Yamvakas EC. Is white cell reduction equivalent to antibody screening in RBC concentrates and RBC. Transfusion 2005;45:1455–6.

Chapter 20

References

References

Chapter 21

Tarantino M. Recent advances in the treatment of childhood immune thrombocytopenic purpura. Semin Hematol 2006;43(3 Suppl. 5):S11-17; discussion S18-19.

211 Wernet D, Sessler M, Dette S, Northoff H, Schnaidt M. Post-transfusion purpura falsely diagnosed as heparin-induced thrombocytopenia.

210 Murphy MF, Waters AH, Doughty HA, et al. Alloantibodies against low-frequency human platelet antigens do not account for a significant proportion of cases of fetomaternal alloimmune thrombocytopenia: evidence from 10/54 cases.

207 Peña JRA, Saidman SL, Girouard TC, Meister E, Dzik WH, Makar RS. Anti-HLA alloantibodies in surgical patients refractory to platelet transfusions.

205 Silver RM, Porter TF, Branch DW, Eplin MS, Scott JR. Neonatal alloimmune thrombocytopenia: antenatal management.

204 Ghevaert C, Rankin A, Huiskes E, et al. Alloantibodies against low-frequency human platelet antigens do not account for a significant proportion of cases of fetomaternal alloimmune thrombocytopenia: evidence from 10/54 cases.

198 Very low platelet counts in post-transfusion purpura due to HPA-1a immunization.

Chapter 22

7 Borregaard N. Neutrophils, from marrow to microbes. Immunity 2010;33:657–70.
Chapter 23

References

References

Chapter 24

13 van der Meer PF, et al. Six filters for the removal of white cells from red cell concentrates, evaluated at 4 degrees C and/or at room temperature. Transfusion 1999;39(3):265–70.
43 Blumberg N, Heal JM, Gettings K. WBC reduction of RBC transfusions is associated with a decreased incidence of RBC alloimmunization. Transfusion 2003;43(7):945–52.
References

Chapter 25

References

Chapter 26

Ronald G. Strauss.

Chapter 27

References

33. Committee for Proprietary Medicinal Products (CPMP). Note for guidance on virus validation studies: the design, construction and interpretation of studies

108 Lemm G. Composition and properties of IVig preparations that affect tolerability and therapeutic efficacy. Neurology 2002;59(Suppl.6):528–32.

References

Chapter 28

References

Chapter 29

Lancellotti S, Basso M, De Cristofaro R. Congenital prothrombin deficiency.

Berntorp E. Von Willebrand disease.

References

Chapter 30

54 Glover NJ, Collis RE, Collins P. Fibrinogen concentrate use during major obstetric haemorrhage: an international randomised, double blind, placebo controlled trial http://www.thewomantrial.lshtm.ac.uk.

56 Triulzi DJ. The art of plasma transfusion therapy. Transfusion 2006;46:1268–70.

64 Triulzi DJ. The art of plasma transfusion therapy. Transfusion 2006;46:1268–70.

65 Triulzi DJ. The art of plasma transfusion therapy. Transfusion 2006;46:1268–70.

Chapter 31

References

15 BDIPharma. 2014 comparison charts: intravenous immune globulin (10% liquid).

53 US Food and Drug Administration. FDA Safety Communication: updated
54 Berger M, McCallus DE, Lin CS-Y. Rapid and reversible responses to IVIG in
55 Hellmann MA, Mosberg-Galili R, Lotan I, Steiner I. Maintenance IVIG therapy in
56 Siani B, Willimann K, Wymann S, Marques A, Widmer E. Isoagglutinin reduction
57 Nicolay U, Kiessling P, Berger M,
58 Dhainaut F, Guillaumat P-O, Dib H,
59 Roemsch JR. Identi
60 Rossi F, Sultan Y, Kazatchkine MD. Anti-idiotypes against autoantibodies and
61 Huang F, Feuille E, Cunningham-Rundles C. Home care use of intravenous and
62 Oak S, Gilliam LK, Landin-Olsson M,
63 Gardulf A, Andersen V, Bjorkander J,
64 Grove KA, Brouwer BA, Rank S, et al. Randomized, double-blind, placebo-controlled
65 Basta M, Dalakas MC. High-dose intravenous immunoglobulin exerts its benefi-
66 Rossi F, Sultan Y, Kazatchkine MD. Anti-idiotypes against autoantibodies and
67 Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the
69 Li N, Zhao M, Hilario-Vargas J, et al. Complete FeRn dependence for intra-
71 Balyajy J, Lacroix-Demazes S, Delignat S, et al. Intravenous immunoglobulin
72 Sundin U, Nava S, Hammarstrom L. Induction of unresponsiveness against IgA in
73 Gardulf A, Andersson V, Bjorkander J, et al. Subcutaneous immunoglobulin replace-
74 Dalakas M. High-dose intravenous immunoglobulin and serum viscosity: risk of
75 Grabenstein JD. ImmunoFacts: vaccines and immunologic drugs, 2013
76 Gardulf A, Andersen V, Bjorkander J, et al. Subcutaneous immunoglobulin admin-
77 Reinhart WH, Berchtold PE. Effect of high dose intravenous immunoglobulin
78 Primary Immune Deficiency Committee of the American Academy of Allergy, Asthma and Immunology. Eight guiding principles for IVIG therapy. http://www.aaaai.org/Aaaai/media/MedicalLibrary/PDF%20Documents/Practice%20Resources/IVIG-guiding-principles.pdf
79 Sundin U, Nava S, Hammarstrom L. Induction of unresponsiveness against IgA in
80 Gardulf A, Andersen V, Bjorkander J, et al. Subcutaneous immunoglobulin replace-
81 US Food and Drug Administration. FDA Safety Communication: updated
82 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
83 Roenisch JR. Identification of activated factor XI as the major biochemical root
84 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
85 US Food and Drug Administration. FDA Safety Communication: updated
86 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
87 Roenisch JR. Identification of activated factor XI as the major biochemical root
88 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
89 US Food and Drug Administration. FDA Safety Communication: updated
90 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
91 Roenisch JR. Identification of activated factor XI as the major biochemical root
92 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
93 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
94 Roenisch JR. Identification of activated factor XI as the major biochemical root
95 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
96 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
97 Roenisch JR. Identification of activated factor XI as the major biochemical root
98 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
99 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
100 Roenisch JR. Identification of activated factor XI as the major biochemical root
101 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
102 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
103 Roenisch JR. Identification of activated factor XI as the major biochemical root
104 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
105 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
106 Roenisch JR. Identification of activated factor XI as the major biochemical root
107 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
108 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
109 Roenisch JR. Identification of activated factor XI as the major biochemical root
110 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
111 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
112 Roenisch JR. Identification of activated factor XI as the major biochemical root
113 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.
114 Centers for Disease Control and Prevention (CDC). Renal insufficiency and failure
115 Roenisch JR. Identification of activated factor XI as the major biochemical root
116 Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin.

Chapter 33

References

References

Chapter 34

112 Fuchsmedizin Immunhamatologie 2012;51(3):427.

114 Fuchsmedizin Immunhamatologie 2012;51(3):427.

References

Chapter 35

54 Wright JH. The origin and nature of blood platelets.

53 Mohle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell

52 Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage FJ. Genomic

51 van Os R, van Schie ML, Willemze R, Fibbe WE. Proteolytic enzyme levels are

50 Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-

49 Dale DC, Bonilla MA, Davis MW, et al.

48 Green MD, Koelbl H, Baselga J,

46 Crawford J, Armitage J, Balducci L,

45 van Os R, van Schie ML, Willemze R, Fibbe WE. Proteolytic enzyme levels are

44 Smith RE, Bryant J, DeCillis A, Anderson S. Acute myeloid leukemia and myelodys-

43 Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage FJ. Genomic

42 Green MD, Koelbl H, Baselga J,

41 Gascon P. Presently available biosimilars in hematology-oncology: G-CSF. Target

56 Kuter DJ, Bussel JB, Newland A, et al. Long-term treatment with romiplostim in

55 Wright JH. The origin and nature of blood platelets.

54 Mohle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell

53 Mohle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell

52 Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage FJ. Genomic

51 van Os R, van Schie ML, Willemze R, Fibbe WE. Proteolytic enzyme levels are

50 Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-

49 Dale DC, Bonilla MA, Davis MW, et al.

48 Green MD, Koelbl H, Baselga J,

46 Crawford J, Armitage J, Balducci L,

45 van Os R, van Schie ML, Willemze R, Fibbe WE. Proteolytic enzyme levels are

44 Smith RE, Bryant J, DeCillis A, Anderson S. Acute myeloid leukemia and myelodys-

43 Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage FJ. Genomic

42 Green MD, Koelbl H, Baselga J,

41 Gascon P. Presently available biosimilars in hematology-oncology: G-CSF. Target

57 Molineux G. The development of romiplostim for patients with immune throm-

56 Kuter DJ, Bussel JB, Newland A, et al. Long-term treatment with romiplostim in

55 Wright JH. The origin and nature of blood platelets.

54 Mohle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell

53 Mohle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell

52 Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage FJ. Genomic

51 van Os R, van Schie ML, Willemze R, Fibbe WE. Proteolytic enzyme levels are

50 Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-

49 Dale DC, Bonilla MA, Davis MW, et al.

48 Green MD, Koelbl H, Baselga J,

46 Crawford J, Armitage J, Balducci L,

45 van Os R, van Schie ML, Willemze R, Fibbe WE. Proteolytic enzyme levels are

44 Smith RE, Bryant J, DeCillis A, Anderson S. Acute myeloid leukemia and myelodys-

43 Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage FJ. Genomic

42 Green MD, Koelbl H, Baselga J,

41 Gascon P. Presently available biosimilars in hematology-oncology: G-CSF. Target

57 Molineux G. The development of romiplostim for patients with immune throm-

56 Kuter DJ, Bussel JB, Newland A, et al. Long-term treatment with romiplostim in

55 Wright JH. The origin and nature of blood platelets.

54 Mohle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell

53 Mohle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell

52 Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage FJ. Genomic

51 van Os R, van Schie ML, Willemze R, Fibbe WE. Proteolytic enzyme levels are

50 Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-

49 Dale DC, Bonilla MA, Davis MW, et al.

48 Green MD, Koelbl H, Baselga J,

46 Crawford J, Armitage J, Balducci L,

45 van Os R, van Schie ML, Willemze R, Fibbe WE. Proteolytic enzyme levels are

44 Smith RE, Bryant J, DeCillis A, Anderson S. Acute myeloid leukemia and myelodys-

43 Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage FJ. Genomic

42 Green MD, Koelbl H, Baselga J,

41 Gascon P. Presently available biosimilars in hematology-oncology: G-CSF. Target

57 Molineux G. The development of romiplostim for patients with immune throm-

56 Kuter DJ, Bussel JB, Newland A, et al. Long-term treatment with romiplostim in

55 Wright JH. The origin and nature of blood platelets.

54 Mohle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell

53 Mohle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell

52 Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage FJ. Genomic

51 van Os R, van Schie ML, Willemze R, Fibbe WE. Proteolytic enzyme levels are

50 Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-

49 Dale DC, Bonilla MA, Davis MW, et al.

48 Green MD, Koelbl H, Baselga J,
References

Chapter 36

97 World Marrow Donor Association (WMDA). Unrelated cord blood banks/regis-
106 Sövles P, Mirabet V, Planells D, et al. Red blood cell depletion with a semi-
108 Almici C, Carlo-Stella C, Wagner JE, et al. Density separation and cryo-
115 NET CORD and Foundation for the Accreditation of Cellular Therapy (FACT). International standards for cord blood collection, processing, testing, banking, selection and release. 3rd ed. Omaha, NE: FACT; 2006.
121 Hubel A, Cariquist D, Clay M, et al. Liquid storage, shipment, and cryopre-
122 Pereira-Cunha FG, Duarte ASS, Reis-Alves SC, et al. Umbilical cord blood CD34+ stem cells and other mononuclear cell subtypes processed up to 96 h from collection and stored at room temperature maintain a satisfactory functionality for cell therapy. Vox Sang 2015;108:72–81.
129 McKenna D, Wagner J, McCullough J. Umbilical cord blood infusions are associated with mild reactions and are overall well-tolerated [abstract]. Cytother-
apy 2003;5:438.
135 NET CORD and Foundation for the Accreditation of Cellular Therapy (FACT). FACT international cord blood standards accreditation manual. 5th ed. Omaha, NE: FACT, n.d.
References

Chapter 37

27 Diersselpuis MP, Spierings E, Drabbe S, et al. Minor H antigen matches and mismatches are equally distributed among recipients with or without complications after HLA identical sibling renal transplantation. Tissue Antigens 2013;82:212–16.

29 Martin PJ. Increased disparity for minor histocompatibility antigens as a potential cause of increased GVHD risk in marrow transplantation from unrelated donors compared with related donors. Bone Marrow Transplant 1991;8:217–23.

32 Harvey J, Green A, Cornish J, et al. Improved survival in matched unrelated donor transplant for childhood ALL since the introduction of high-resolution matching at HLA class I and II. Bone Marrow Transplant 2012;47:1294–300.

142 Bonneville M, O
141 Locatelli F, Bauquet A, Palumbo G, Moretta F, Bertaina A. Negative depletion of
140 Zheng H, Matte-Martone C, Li H, Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of allogeneic CD62L-
et al.
144 Boeckh M, Gooley TA, Myerson D, Cunningham T, Schoch G, Bowden RA. Long-term acyclovir for
158 Verslyuys AB, Rossen JW, van Ewijk B, Schuurman R, Bierings MB, Boelens JJ. Strong association between respiratory viral infection early after hematopoietic stem cell transplantation and the development of life-threatening acute and chronic allogeneic
141 Locatelli F, Bauquet A, Palumbo G, Moretta F, Bertaina A. Negative depletion of
140 Zheng H, Matte-Martone C, Li H, Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of allogeneic CD62L-
et al.
144 Boeckh M, Gooley TA, Myerson D, Cunningham T, Schoch G, Bowden RA. Long-term acyclovir for
158 Verslyuys AB, Rossen JW, van Ewijk B, Schuurman R, Bierings MB, Boelens JJ. Strong association between respiratory viral infection early after hematopoietic stem cell transplantation and the development of life-threatening acute and chronic allogeneic

reaction-detectable lymphoma cells using monoclonal antibodies and immuno-

273 Nadler LM, Talvian T, Botnick L, et al. Anti-B1 monoclonal antibody and

complement treatment in autologous bone-marrow transplantation for relapsed

stem cell transplantation for relapsed follicular lymphoma after nonmyeloablative

conditioning with fludarabine, cyclophosphamide, and rituximab. Blood 2008;111:

5538–6.

cell transplantation in relapsed, refractory, and transformed indolent non-Hodg-

276 Khouri IF, Romaguera J, Kantarjian H, et al. Hyper-CVAD and high-dose

methotrexate/ cytarabine followed by stem-cell transplantation: an active regimen

277 Lefrere F, Delmer A, Suzan F, et al. Sequential chemotherapy by CHOP and

DHAP regimens followed by high-dose therapy with stem cell transplantation

induces a high rate of complete response and improves event-free survival in

radiochemotherapy followed by autologous stem cell transplantation in first

remission significantly prolongs progression-free survival in mantle cell lym-

phoma: results of a prospective randomized trial of the European MCL Network.

279 Ritchie DS, Seymour JF, Grigg AP, et al. The hyper-CVAD-rituximab chemother-

apy programme followed by high-dose busulfan, melphalan and autologous

stem cell transplantation produces excellent event-free survival in patients with

Center risk-adapted transplantation strategy in mantle cell lymphoma. Blood

2009;113:4144–52.

281 van’t Veer MB, de Jong D, Mackenzie M, et al. High-dose Ara-C and beam with

autograft rescue in R-CHOP responsive mantle cell lymphoma patients. Br J

282 Van Besien K, Khouri I, Champlin R, McCarthy P. Allogeneic transplantation for

283 Khouri IF, Lee MS, Saliba RM, et al. Nonablative allogeneic stem-cell transplan-

tation for advanced/recurrent mantle cell lymphoma. J Clin Oncol 2003;21:

4407–12.

284 Cook G, Smith GM, Kirkland K, et al. Outcome following Reduced-Intensity

Allogeneic Stem Cell Transplantation (RIC AlloSCT) for relapsed and refractory

mantle cell lymphoma (MCL): a study of the British Society for Blood and Marrow

transplantation after fludarabine and 2 Gy total body irradiation for relapsed

286 Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural

287 Hosing C, Champlin RE. Stem-cell transplantation in T-cell non-Hodgkin’s

288 Kim HJ, Bang SM, Lee J, et al. High-dose chemotherapy with autologous stem cell

transplantation in extranodal NK/T-cell lymphoma: a retrospective comparison

289 Shustov AR, Gooley TA, Sandmaier BM, et al. Allogeneic haematopoietic cell

transplantation after nonmyeloablative conditioning in patients with T-cell and

chemotherapy with hematopoietic stem cell transplantation in patients with

chemotherapy with autologous peripheral blood stem cell transplantation during a

10-year period in 64 patients with germ cell tumor. Biol Blood Marrow Transplant

PBSC transplantation for poor prognosis germ cell tumors: a retrospective

monocenter analysis of 44 cases. Bone Marrow Transplant 2010; Oct; 47

293 Nichols CR, Tricot G, Williams SD, et al. Dose-intensive chemotherapy in

refractory germ cell cancer—a phase I/II trial of high-dose carboplatin and
etoposide with autologous bone marrow transplantation. J Clin Oncol

294 Bouliff E. The role of myeloablative chemotherapy with autologous hematopoietic

cell rescue in central nervous system germ cell tumors. Pediatr Blood Cancer

295 Motzer RJ, Nichols CJ, Margolin KA, et al. Phase III randomized trial of

conventional-dose chemotherapy with or without high-dose chemotherapy and

autologous hematopoietic stem-cell rescue as first-line treatment for patients with

296 Bodenhuis S, Bontenbal M, Beex LV, et al. High-dose chemotherapy with

2003;349:7–16.

297 Tallman MS, Gray R, Rebert NJ, et al. Conventional adjuvant chemotherapy with

or without high-dose chemotherapy and autologous stem-cell transplantation in

compared with high-dose chemotherapy plus autologous hematopoietic stem-cell

transplantation for metastatic breast cancer. Philadelphia Bone Marrow Trans-

References

Chapter 38

References

Chapter 39

References

Chapter 40

3 Brubaker. S.AATB CV survey results, 2007 vs 2010. 6th World Congress on Tissue Banking, 20th Congress of EABT, 10 November 2011.
The Lewin Group for EBA, September 2013.
5 Centers for Disease Control and Prevention; American Society for Reproductive Medicine, 2005. Gonorrhea and chlamydial infection among males in the United States.
9 The American Society for Reproductive Medicine. 2006. Allogeneic transplantation of an ovum or embryo donation.

3 Brubaker. S.AATB CV survey results, 2007 vs 2010. 6th World Congress on Tissue Banking, 20th Congress of EABT, 10 November 2011.
The Lewin Group for EBA, September 2013.
5 Centers for Disease Control and Prevention; American Society for Reproductive Medicine, 2005. Gonorrhea and chlamydial infection among males in the United States.
9 The American Society for Reproductive Medicine. 2006. Allogeneic transplantation of an ovum or embryo donation.
47 Dziedzic-Goczalska A, Ostrowski K, Stachowicz W, et al. Effect of radiation sterilization on the osteoinductive properties and the rate of remodeling of

References

Chapter 41

113 Pan G, O
109 Lanier LL. Up on the tightrope: natural killer cell activation and inhibition.
107 Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of
et al.
102 Dudziak D, Kamphorst AO, Heidkamp GF, et al.
100 Schuster SJ, Neelapu SS, Gause BL, et al.
118 Sun JC, Beilke JN, Bezman NA, Lanier LL. Homeostatic proliferation generates
117 Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL. NK cells and immune
105 Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards ef
103 Li D, Romain G, Flamar AL, et al.
116 Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL. NK cells and immune
133 Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells.
101 Avigan D, Rosenblatt J, Kufe D. Dendritic/tumor fusion cells as cancer vaccines.
100 Trevor KT, Cover C, Ruiz YW, et al.
119 Kim S, Poursine-Laurent J, Truscott BS, et al. Licensing of natural killer cells by host
118 Rourke K, Chinnaiyan AM, et al.
101 Dudziak D, Kamphorst AO, Heidkamp GF, et al.
100 Schuster SJ, Neelapu SS, Gause BL, et al.
117 Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL. NK cells and immune
131 Paust S, von Andrian UH. Natural killer cell memory.
130 Faust S, von Andrian UH. Natural killer cell memory.

McKenna D, Matthay MA, Pati S. Correspondence to: soliciting strategies for developing cell-based reference materials to advance mesenchymal stem/stromal cell research and clinical translation. Stem Cells Dev 2014;23(15):1717–8.
References

Chapter 42

58 Samuel, R.
59 Sundaram, S.
et al.
56 Karamariti, E.
55 Hibino, N.
54 Sundaram, S., Echter, A., Sivarapatna, A., Qiu, C. & Niklason, L.
Pastor, M.F. et al. Repeated recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis. Orthopedic reviews 4, e13(2012).

269 Phelps, E.A. & Garcia, J. Engineering more than a cell: vascularization strategies that lead to function. Biomaterials 26, 32–42 (2005).
References

Chapter 43

122 Radder CM, Brand A, Kanhai HHH. Will it even be possible to balance the risk of intracranial hemorrhage in fetal or neonatal alloimmune thrombocytopenia against the risk of treatment strategies to prevent it? Vox Sang 2003;84:318–25.
References

Chapter 44

8 Kelemen E. Macrophages are the first differentiated blood cells formed in human embryonic liver. *Exp Hematol* 1980;8:996–1000.

References

Chapter 45

9 Ismail Aq, Ghandi, Al-Shimy N. Intrauterine renal jaundice due to hereditary spherocytosis and Gilbert’s syndrome. BMJ Case Rep 2011. doi: 10.1136/ bcr.05.2011.4293

18 Ismail AQ, Ghandi, Al-Shimy N. Intrauterine renal jaundice due to hereditary spherocytosis and Gilbert’s syndrome. BMJ Case Rep 2011. doi: 10.1136/ bcr.05.2011.4293

23 Ismail Aq, Ghandi, Al-Shimy N. Intrauterine renal jaundice due to hereditary spherocytosis and Gilbert’s syndrome. BMJ Case Rep 2011. doi: 10.1136/ bcr.05.2011.4293

Chapter 47

References

98 O’Sheahan MF, Atterbury C, Bolton Maggs P, et al. Guidelines for the use of
99 Goldenberg NA, Manco-Johnson MJ. Pediatric hemostasis and use of plasma
100 Schulte R, Jordan LC, Morad A, Naftel RP, Wellons JC, Ted, Sidonio R. Rise in late
onset vitamin K deficiency bleeding in young infants because of omission or
101 Shearer MJ. Vitamin K deficiency bleeding (VKDB) in early infancy. Blood Rev
102 Hendrickson JE, Shaz BH, Pereira G, et al. Coagulopathy is prevalent and
associated with adverse outcomes in transfused pediatric trauma patients. J Pediatr
massive transfusion protocol: one institution’s experience. Transfusion 2012;52
104 Chadler SJ, Williams N, Wang W, Groner JL. A pediatric massive transfusion
105 Nosanov L, Inaba K, Okoye O, et al. The impact of blood product ratios in
106 Livingston MH, Singh S, Merritt NH. Massive transfusion in paediatric and
adolescent trauma patients: incidence, patient profile, and outcomes prior to a
107 Huang PN, Koerper MA. Factor V deficiency: a concise review. Haemophilia
sion of the severity of clinical presentations among patients with rare bleeding
110 Steward RG, Saleh OA, James AH, Shah AA, Price TM. Management of
gynecologic surgery in the patient with factor XI deficiency: a review of the
apheresis in clinical practice—evidence-based approach from the Writing Com-
mittee of the American Society for Apheresis: the sixth special issue. J Clin Apheresis
112 Winters JL. American Society for Apheresis guidelines on the use of apheresis in
clinical practice: practical, concise, evidence-based recommendations for the
113 Joseph C, Gattinoni J. Complement disorders and hemolytic uremic syndrome.
114 Christmann M, Hansen M, Bergmann C, Schwabe D, Brand J, Schneider W.
Eculizumab as first-line therapy for atypical hemolytic uremic syndrome. Pediat-
115 Wada H, Matsumoto T, Yamashita Y. Natural history of thrombotic thrombocy-
topenic purpura and hemolytic uremic syndrome. Semin Thromb Hemost 2014
(8):866–73.
116 Naik S, Mahoney DH. Successful treatment of congenital TTP with a novel
approach using plasma-derived factor VIII. J Pediatr Hematol Oncol 2013;35
(7):551–3.
117 Peyvandi F, Mannucci PM, Valsecchi C, Pontiggia S, Farina C, Retzios AD.
ADAMTS13 content in plasma-derived factor VIII/von Willebrand factor concent-
118 Eaton MP, Iannoli EM. Coagulation considerations for infants and children
119 Mou SS, Gineur BP, Molitor-Kirsch EA, et al. Fresh whole blood versus recon-
2004;351(16):1635–44.
120 Gruenwald CE, McCrindle BW, Crawford-Lean L, et al. Reconstituted fresh whole
blood improves clinical outcomes compared with stored component blood
therapy for neonates undergoing cardiopulmonary bypass for cardiac surgery:
strategy without FFP during CPB on postoperative coagulation and recovery in
without FFP on postoperative coagulation and recovery in pediatric patients with
123 Northrop MS, Sidonio RF, Phillips SE, et al. The use of an extracorporeal
membrane oxygenation anticoagulation laboratory protocol is associated with
decreased blood product use, decreased hemorrhagic complications, and increased
124 Eder AF. Update on HDFN: new information on long-standing controversies.
Immunohematology/Am Red Cross 2006;22(4):188–95.
125 Benjamin RL, McLaughlin LS. Plasma components: properties, differences, and
126 Eder AF, Sebok MA. Plasma components: FFP, FP24, and thawed plasma.
127 Mehr CR, Gupta R, von Recklinghausen FM, Szczepiorkowski ZM, Dunbar NM.
Balancing risk and benefit: maintenance of a thawed Group A plasma inventory
for trauma patients requiring massive transfusion. J Trauma Acute Care Surg
(2):421–45, ix.
129 Levy JH, Welbey I, Goodnough LT. Fibrinogen as a therapeutic target for bleeding:
a review of critical levels and replacement therapy. Transfusion 2014;54(5):1389–
405; quiz 8.
130 Hedges SJ, Dehoney SB, Hooper JS, Amanzadeh J, Busti AJ. Evidence-based
131 Bevan DH. Cryoprecipitate: no longer the best therapeutic choice in congenital
132 Gibson BE, Todd A, Roberts I, et al. Transfusion guidelines for neonates and older
133 Spahn DR, Bouillon B, Cerny V, et al. Management of bleeding and coagulopathy
following major trauma: an updated European guideline. Crit Care 2013;17(2):
R76.
134 Erber WN, Perry DJ. Plasma and plasma products in the treatment of massive
References

Chapter 48

References

Chapter 49

Chapter 50

References

Chapter 51

References

References

Chapter 52

References

Chapter 53

We refer you to the full reference for detailed information.

References

Chapter 54

References

Chapter 55

References

Chapter 56

Conlan MG, Lin L-S, Stassinopoulos A. Investigation of immunoreactivity observed after transfusion of S-303 RBCs in 2 phase III clinical trials in support of acute or chronic anemia. Transfusion 2005;45(Suppl. 1):29A.

104 Chandra S, Gröner A, Feldman F. Effectiveness of alternate treatments for

101 Ros C, Baltzer C, Mani B, Kempf C. Parvovirus uncoating in vitro reveals a

105 Dichtelmüller HO, Biesert L, Fabbrizzi F, et al

107 Dichtelmüller HO, Biesert L, Fabbrizzi F, et al

99 European Medical Evaluations Agency. Note for guidance on virus validation

98 World Health Organization Committee on Biological Standardization. Guidelines

97 US Department of Health and Human Services, FDA, CDER and CBER. Guidance

96 Ashwin Parenky A, Myler H, Amaravadi L, et al. New FDA draft guidance on

en_GB/document_library/Scienti

94 Horowtiz B, Ben-Hur E. Strategies for viral inactivation.

93 Heimburger N. From cryoprecipitate to virus-safe high-purity concentrate.

91 Bux J. Transfusion-related acute lung injury (TRALI): a serious adverse event of

reducing potential viral contaminants from plasma derived products.

plasma and intravenous immunoglobulins.

mechanism of DNA release without capsid disassembly and striking differences in

during pasteurization of human serum albumin.

human blood plasma products. Annex 4. WHO technical report, Series 924,

immunogenicity assessment for therapeutic protein products.

VIII. Virology

28

56

63.

1011:1160

–

100 Blümel J, Schmidt I, Willkommen H, Lower J. Inactivation of parvovirus B19

European Medicines Agency. Guideline on plasma-derived medicinal products,

Enveloped virus inactivation by caprylate:

2005; 28

549

44

42

67

–

2003; 28

31.

31.

–

2008; 68

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.

–

2003; 49

122

–

2001; 503.

2001; 503.
Chapter 57

References

28 Conway LT, Scott EP. Acute hemolytic transfusion reaction due to ABO incompatible plasma in a platelet apheresis concentrate (letter). Transfusion 1984;24:413.

32 Cooling LW, Butch S, Downs T, Davenport R. Isoagglutinin titers in pooled group O platelets are comparable to apheresis platelets (abstract). Transfusion 2007;47 (Suppl.):78A.

References

Chapter 58

Snyder EL, Bookbinder M. Role of microaggregate blood filtration in clinical medicine. Transfusion 1983;23:860–70.

References

Chapter 59

547 Popovsky MA, Audet AM, Andrezejewski C Jr. Transfusion-associated circulatory overload in orthopedic surgery patients: a multi-institutional study. Immuno-
552 clinical trial of transfusion requirements in critical care. Transfusion Require-
558 Pelti M, Berg S, Erensaudh J, Berlin G. A randomized controlled trial of transfusion-
559 related acute lung injury: is plasma from multiparous blood donors dangerous?
560 Transfusion 2001;41:317–22.
561 Kleiman S, Caulfield T, Chan P, et al. Toward an understanding of transfusion-related
563 Wallis JP, Luberenko A, Wells AW, Chapman CE. Single hospital experience of
565 Hesch BK. Neppert J. Transfusion-related acute lung injury caused by human
570 edema. Report of a case and a warning regarding treatment. Transfus
573 acute lung injury with extracorporeal cardiopulmonary support in a four-year-old
575 Stainsby D, Jones H, Milkins C, et al. Serious Hazards of Transfusion (SHOT),
577 Church GD, Price C, Sanchez R, Looney MR. Transfusion-related acute lung injury
578 in the paediatric patient: two case reports and a review of the literature.
580 Ririe DG, Lantz PE, Glazier SS, Argenta LC. Transfusion-related acute lung injury
582 Wu TJ, Teng RJ, Tsou Yau KL. Transfusion-related acute lung injury treated with
584 Yang X, Ahmed S. Chandrasekar V. Transfusion-related acute lung injury
585 resulting from designated blood transfusion between mother and child: a report of two
587 Su L, Kamel H. How do we investigate and manage donors associated with a suspected
589 Payne R. The development and persistence of leukocytoglobulins in parous women.
593 Bray RA, Harris SB, Josephson CD, et al. Unappreciated risk factors for transfusion
599 Nishimura M, Hashimoto S, Satake M et al. Investigations into the role of anti-HLA
600 class II antibodies in TRALI. Transfusion 2003;43:185–91.
601 Shires AL, Hsu JH, Fung CY, et al. Supernatant of aged erythrocytes causes lung
602 inflammation and coagulopathy in a “two-hit” in vivo syngeneic transfusion
605 inflammation and coagulopathy in a novel in vivo transfusion model. Blood
607 Silliman CC, Moore EE, Kelher MR, et al. Identification of lipids that accumulate
608 during the routine storage of prestorage leukoreduced red blood cells and cause
606 Phipps RP, Kaufman J, Blumberg N. Platelet derived CD154 (CD40 ligand) and
608 Khan SY, Kalluri MR, Heal JM, et al. Soluble CD40 ligand accumulates in stored
609 blood components, primes neutrophils through CD40, and is a potential cofactor
611 Tuunanen PR, Gerards MC, Jongma G et al. Lack of evidence of CD40 ligand involvement in
613 Vaara AP, Binnekade JM, Prins D, et al. Risk factors and outcome of transfusion-
616 Madyastha PR, Jeter EK, Key LJ Jr. Cytophilic immunoglobulin G binding on
617 neutrophils from a child with malignant osteopetrosis who developed fatal acute
618 respiratory distress mimicking transfusion-related acute lung injury. Am J Hemot
617 Ruk A, Gorson KC, Kenney L, Weinstein R. Transfusion-related acute lung injury
618 after the infusion of IVIG. Transfusion 2001;41:264–8.
618 Sinnott P, Bodger S, Gupta A, Brophy M. Presence of HLA antibodies in single-
619 donor-derived fresh frozen plasma compared with pooled, solvent detergent-
622 isbtweb.org/working-parties/haemovigilance/
623 Robillard P, Nawer K, Chapdelaine A. Transfusion associated circulatory overload
624 (TACO): current leading cause of transfusion-associated fatalities reported to the
625 Piccin A, Cronin M, Brady R, et al. Transfusion-associated circulatory overload in
626 Ireland: a review of cases reported to the National Haemovigilance Office 2000 to
Chapter 60

16 US Food and Drug Administration (FDA) and Center for Biologies Evaluation and Research. Fatalities reported to FDA following blood collection and transfusion. Rockville, MD: FDA and Center for Biologies Evaluation and Research, 2013.

17 US Food and Drug Administration (FDA) and Center for Biologies Evaluation and Research. Fatalities reported to FDA following blood collection and transfusion. Rockville, MD: FDA and Center for Biologies Evaluation and Research, 2009.

34 Serious Hazards of Transfusion (SHOT). The 2012 annual SHOT report. 2013.

35 Serious Hazards of Transfusion (SHOT). The 2013 annual SHOT report. 2014.

36 Serious Hazards of Transfusion (SHOT). The 2014 annual SHOT report. 2015.

43 Serious Hazards of Transfusion (SHOT). The 2021 annual SHOT report. 2022.

44 Serious Hazards of Transfusion (SHOT). The 2022 annual SHOT report. 2023.

45 Serious Hazards of Transfusion (SHOT). The 2023 annual SHOT report. 2024.

46 Serious Hazards of Transfusion (SHOT). The 2024 annual SHOT report. 2025.

47 Serious Hazards of Transfusion (SHOT). The 2025 annual SHOT report. 2026.
References

Chapter 61

References

Chapter 62

29 Solheim BG. The role of pre-transplant blood transfusions. Transplant Proc 1979;11:140–44.

56 Vamvakas E. Why have meta-analyses of the randomized controlled trials of the association between non-white blood-cell-reduced allogeneic blood transfusion and postoperative infection produced discordant results? Vox Sang 2007;93:196–207.

163 Peterson CG, Skaar, V, Venge, P. Human eosinophil cationic proteins (ECP and EPO) and their suppressive effects on lymphocyte proliferation. Immunobiology 1986;171:1–13.

178 Clark DA, Gorczynski RM, Blajchman MA. Transfusion-related immunomodulation due to blood dendritic cells expressing the CD200 tolerance-signaling molecules and their suppressive effects on lymphocyte proliferation by leukodepletion and passive transfer using spleen cells. Blood 1993;81:1880–82.

180 Hashimoto MN, Kimura EY, Yamamoto M, Bordin FO. Expression of Fas and Fas ligand on spleen T cells of experimental animals after unmodified or leukoreduced allogeneic blood transfusions. Transfusion 2004;44:158–63.

